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Asking one to prove that there are no simple groups of a given order is a common
group theory exam question. These are fun questions that illustrate how the
structure of groups is in part governed by the prime factorization of their order.
Sylow’s theorems frequently are the crucial tool in such proofs. In this note, I’ll
outline three common strategies that you can used when faced with this sort
of exam question. I’ll also mention some powerful results that are useful but
beyond the scope of this course.

1 Review of Sylow’s Theorems

We begin by reviewing Sylow’s theorems. Let G be a finite group and let p | |G|
for some prime p.

Sylow’s First Theorem: Sylow’s first theorem tells us that if pk | |G| then
the number of subgroups of G of size pk is congruent to 1 modulo p. In par-
ticular, for any prime power divisor pk of G, there exists a subgroup H ≤ G of
order pk. An elegant proof of this result can be found here. Note that this ar-
gument works for any k ∈ N such that pk | |G|, not just the maximal such power.

However, it turns out that we can say more when we require k to be the max-
imal power such that pk | |G|. We will see this momentarily but first let us
fix some terminology and notation. Let n ∈ N be the largest number such that
pn | |G|. We call any subgroup H ≤ G of order pn a p-Sylow subgroup of G. Let
Sylp(G) denote the collection of p-Sylow subgroups and np := |Sylp(G)|. Note
that Sylp(G) must be nonempty by Sylow’s first theorem.

Sylow’s Second Theorem: Sylow’s second theorem tells us if H is any sub-
group of G of order pk, 0 ≤ k ≤ n, then for any P ∈ Sylp(G) there exists
g ∈ G such that H ⊆ gPg−1. This theorem follows from Sylow’s first theorem
by a counting argument involving the action of H on the cosets G/P by left
multiplication.

By considering H ∈ Sylp(G), it easily follows that G acts transitively on Sylp(G)
by conjugation, i.e., all p-Sylow subgroups of G are conjugate to one another.
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This corollary is also often called Sylow’s second theorem.

Sylow’s Third Theorem: Sylow’s third theorem tells us that np = [G : P ]
for any P ∈ Sylp(G). It is a consequence of Sylow’s second theorem. Indeed,
Sylow’s second theorem says that Sylp(G) consists of the orbit under conjugation
of a given P ∈ Sylp(G). By the orbit-stablizer lemma, the size of this orbit
is the index of the stabilizer in G. However, the stabilizer of the action on
subgroups by conjugation is precisely the normalizer, so np = [G : NG(P )] for
any P ∈ Sylp(G). Further, by Lagrange’s theorem, it follows that np | [G : P ],
which is often called Sylow’s third theorem.

2 Contradiction by counting

Since conjugation is an automorphism, it preserves the order of subgroups.
Therefore, the conjugate of any p-Sylow subgroup is also a p-Sylow subgroup.
Thus, if np = 1 then the unique p-Sylow subgroup P is normal in G (each of
the conjugates of P must be equal to P ).

This presents our first strategy for showing that there are no simple groups of
a given order: we can attempt to show that there is a unique p-Sylow subgroup
for some prime p dividing the given order. However, if we are given an arbitrary
group G we generally cannot directly compute np = [G : P ], P ∈ Sylp(G). Usu-
ally, the best we can do is try to find np by using np ≡ 1 mod p and np | [G : P ].
Unfortunately, this is often not enough information to determine np exactly, so
we need to do some more work. One strategy will be to show that not having
any unique Sylow subgroups for some prime implies that the size of our group
is too large. We will illustrate this with the following example.

Example: There are no simple groups of order 520.

Observe that 520 = 23 · 5 · 13. Let G be a group of order 520. By Sylow’s
theorems, n5 ≡ 1 mod 5 and n5 | 104 and n13 ≡ 1 mod 13 and n13 | 40. It
follows that n5 = 1 or n5 = 26 and n13 = 1 or n13 = 40. If either of these
numbers is equal to 1, then we have a unique Sylow subgroup, which must
be normal, implying G is not simple. Therefore, suppose that n5 = 26 and
n13 = 40. We make use of the following lemma, whose proof is a good exercise:

Lemma 1 Let G be a group with subgroups H1, H2 ≤ G with |H1| = |H2| = p
for a prime p. Then, H1 ∩H2 = {e} or H1 = H2.

By the lemma, each distinct p-Sylow subgroup of prime order contributes p− 1
distinct elements to the size ofG. In our particular case, we see thatGmust have
at least 26(5− 1) + 40(13− 1) = 584 > 520 elements, which is a contradiction.

■
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A similar argument shows that there are simple groups of order pqr for distinct
primes p, q, r.

3 Embedding Simple Groups in the Alternating
Group

Lemma 2 If G is a finite simple group with a subgroup H of index n ≥ 3, then
|G| divides n!

2 .

Proof. Recall that the action of G on the cosets G/H by left multiplication
induces a group homomorphism φ : G → Sym(G/H) ∼= Sn with ker(φ) =⋂

g∈G gHg−1 := core(H). Since the kernel of any homomorphism is normal
and G is simple, we must have either ker(φ) = {e} or ker(φ) = G. However,
ker(φ) ≤ H < G, so we must have ker(φ) = {e}. It follows that φ is injective,
hence by the first isomorphism theorem |G| divides n! (using Lagrange’s theo-
rem).

But this was not the claim of the lemma. How do we see the stronger claim that
|G| divides n!

2 ? We will embed G in An. Observe that we have the following
morphism:

G
φ−→ Sym(G/H)

∼−→ Sn
σ−→ {−1, 1}

which is surjective if im(φ) is not contained in An. By the first isomorphism

theorem, ker(φ) has size |G|
2 , which contradicts the simplicity of G. Therefore,

the image of our morphism lands in An and the result follows because |An| = n!
2 .

■

This is a powerful result that allows us to easily prove that many groups of
small order are not simple. Conceptually (at least when dealing with very small
numbers), it tells us that simple groups do have have any unreasonably large
Sylow subgroups because the index of such a subgroup would be very small
and would violate the condition that |G| must divide the factorial of the index
over 2. However, it breaks down when dealing with larger numbers because the
factorial grows so fast.

Example: There are no simple groups of order 36.

A proof of this result is possible by counting as in the previous section, but it
requires some thinking and care. However, it is trivial to prove with our lemma.
Suppose that G is simple of order 36. Any P ∈ Syl3(G) has order 9 and index
4 in G. By the lemma, |G| = 36 must divide 12 = 4!

2 , which is absurd. Thus, G
cannot be simple. Note in this case the embedding into Sn sufficed and we did
not even need the full strength of the lemma.
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By nearly a nearly identical argument, one can prove that, for example, there
are no simple groups of orders 88 or 96 or 1000 or 1, 500 or 25, 000. This is a
surprisingly useful technique for common exam questions.

Example: There are no simple groups of order 112.

Suppose that |G| = 112 = 7 · 24 is simple. Then, any P ∈ Syl2(G) has index 7.
Thus, |G| must divide 7!

2 , which is a contradiction. Observe, however, that |G|
does divide 7!, so this is an example of a case where understanding that we can
embed into An instead of just Sn is useful.

■

We can often find subgroups with a given index by considering normalizers.
Indeed, we know that np = [G : NG(P )], P ∈ Sylp(G), so we always have a
subgroup of index equal to the number of Sylow subgroups of a given prime.

4 Index of Minimal Prime Divisor

Recall from your homework that if G is a finite group, p is the smallest prime
dividing |G|, and H ≤ G is a subgroup of index p, then H is normal in G. We
can often use this result to find nontrivial normal subgroups.

Example: There are no simple groups of order pq for p and q distinct primes.

Using the minimal index condition, this is obvious. Indeed, if q > p then any
subgroup of order q has index p and must be normal.

■

5 Some Results of Burnside

In this section, we will note some powerful results that go beyond the scope of
this course. Group-theoretic proofs are possible for all results in this section
but representation-theoretic proofs are far easier for Burnside’s paqb theorem.

Theorem 1 If G is a finite group and P ∈ Sylp(G) satisfies P ⊆ Z(NG(P ))
then there exists a normal subgroup N ◁ G of order |N | = [G : P ].

This theorem is called Burnside’s transfer theorem. The proof relies on a special
map called the transfer homomorphism. The condition about the normalizer
comes from the idea that “the normalizer controls the fusion.” The condition
that P ⊆ Z(NG(P )) may seem unreasonable but the following proposition shows
that this is not the case.

4



Proposition 1 If p is the smallest prime dividing |G| and P ∈ Sylp(G) is
cyclic, then P ⊆ Z(NG(P )).

Thus, any group that has a cyclic p-Sylow subgroup for the smallest prime di-
visor p must have a nontrivial normal subgroup N ◁ G with |N | = [G : P ]. We
call such an N a normal p-complement of P . In fancy language, we can say that
G is an internal semidirect product of P and N .

We have the following useful corollary.

Corollary 1 If p is the smallest prime dividing |G| and the order of G factors
as |G| = pqn1

1 · · · qnr
r , then G is not simple. In particular, groups of square-free

order are not simple.

In section, I tried to prove that groups of order 525 are not simple (when I
meant to do the proof for order 520). Well, the fact that there are no simple
groups of order 525 is immediate from the above result.

By induction and Burnside’s transfer theorem, the following powerful statement
also results.

Corollary 2 Groups of square-free order are solvable.

A related result, also due to Burnside is the paqb theorem. The standard proof
is a wonderful application of the representation theory of finite groups and
rudimentary algebraic number theory.

Theorem 2 Any group of order paqb is solvable for primes p and q.

In particular, we have the following corollary.

Corollary 3 There are no simple groups of order paqb for distinct primes p
and q.

Recall that A5 is the smallest non-abelian cyclic group. We can understand
why there are no smaller non-abelian simple group just by looking at how all
numbers up to 60 factor. Indeed, by consulting this table, we see that all of the
numbers less than 60 are of the form pa or paqb or are square-free. However,
|A5| = 60 = 22 · 3 · 5, so the alternating group manages to avoid all of our
attempts to show it is not simple!

I will also mention an extremely deep and difficult result due to Feit and Thomp-
son for the sake of completeness.

Theorem 3 Every group of odd order is solvable. Equivalently, there are no
non-abelian finite simple groups of odd order.
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