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Problem 1: Let V and W be n dimensional real vector spaces. Let Hom(V, W)
denote that set of all linear transformations 7': V. — W.

1. Define natural operations of addition and scalar multiplication on Hom(V, W)
so that it is a vector space with these operations.

2. What is the dimension of Hom(V, W)?

3. Let Mat,, x,(R) denote the vector space of n x n matrices with real coeffi-
cients. Define an explicit linear isomorphism ¢ : Hom(V, W) — Mat,, x» (R).

Problem 2: Consider the vector space C([a,b]) consisting of all continuous
functions f : [a,b] — R.

1. Show that the set of all polynomial functions p : [a,b] — R forms a
subspace of C([a, b]).

2. Is the above subspace finite dimensional? Find a basis.

3. Consider C(R) (all continuous real-valued functions on R). Is the function
T.(f) = f(z + a) a linear transformation on C(R)?

Problem 3: Recall that matrices A and B are said to be similar if there
exists an invertible matrix S such that A = SBS~!. A matrix is said to be
diagonalizable if it is similar to a diagonal matrix.

1. If a matrix is diagonalizable is it necessarily invertible? Prove or give a
counterexample.

2. If a matrix is invertible is it necessarily diagonalizable? Prove or give a
counterexample.

3. If a matrix has all nonzero eigenvalues is it true that it is invertible?

4. If a matrix has A = 0 as one of its eigenvalues can it be invertible?

Problem 4: Recall that vectors v and w are orthogonal if their dot product is
zero.



. Suppose that v and w are orthogonal. Prove that the Pythagorean theo-

rem holds: ||v||? + ||w]]? = [|v + w]||2.
Find the matrix that rotates a vector v € R? by an angle of 5

Challenge: Consider the 3-dimensional Euclidean space R?. Let Py R3 —
R? be the linear map that projects onto the plane z = 0. Is the matrix
representation of P, diagonalizable?

True or False:

- w

N o

An invertible matrix is the product of elementary matrices.

The kernel of RREF(A) is the same as the kernel of A for any matrix A.
The image of RREF(A) is the same as the image of A for any matrix A.
Symmetric matrices are diagonalizable.

The eigenvalues of a symmetric matrix are all imaginary.

A matrix is invertible if and only if its determinant is greater than zero.
If V is n-dimensional and W C V is a subspace, then dim(W) < n.

A matrix with real coefficients always has real eigenvalues.

If X is an eigenvalue of a matrix A € Mat,, «,,(R) with eigenvector v € R,
then \ € R.
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1 Orthogonality

In your last two lectures, the concept of orthogonality was introduced and you
learned some basic properties. The goal of this week’s section will be to practice
with the concept of orthogonality and introduce some unifying terminology. We
will rehash many of the results from the lecture notes (but it is good to see these
multiple times). We will work with subspaces of R™, but everything presented
here holds more generally for a finite-dimensional vector space over C equipped
with a Hermitian inner product.

Recall that v, w € R™ are said to be orthogonal if v-w = 0. Given an arbitrary
x € R™ and a subspace V' C R™, we want to show that x can be written as the
sum of an element of V and an element orthogonal to every element in V. We
can think of this as writing x as the sum of its orthogonal projection onto V'
and the vector along which we project. Let us introduce some terminology to
make this idea precise.

Suppose V and W are subspaces of R”. We define the sum of the subspaces as
V4+W ={v+w]|veV,weW}. Wesay that R" is the direct sum of V' and
W, and we write R" =V @ W, provided R* =V + W and VNW = {0}.

(1) Quickly verify for yourself that V' + W is a subspace of R™.

(2) Prove that R® = V @ W if and only if each element of R™ can be
written uniquely in the form v + w, where v € V and w € W.

Let V be a subspace of R". We define the orthogonal complement of V as
Vi={reR"|z-v=0,Yv € V}. Our goal will be show that for any subspace
V CR" V@V, =R" (compare Theorem 5.13 in the lecture notes). We will
also establish a basic fact about dimensions of direct sums. This takes a little
bit of work, so I'll break it down into smaller steps.



(1) Prove that V* is a subspace of R™ for any subspace V' C R™.

(2) Prove that V N V+ = {0}. Therefore, it just remains to show that
every element of R™ has a decomposition as the sum of an element of V'
and one of V+ to establish R* =V @ V+.

(3) By the Gram-Schmidt orthonormalization process (which you’ll
learn soon), every subspace of R™ has an orthonormal basis. Therefore,
V' C R™ has some orthonormal basis v, ..., vg.

Define Py : R™ — R™ by Py (z) = Zle(x -v;)v;. Given z € R™, we can
use the trick of adding and subtracting the same thing to obtain the
decomposition z = (z — Py(z)) + Py(z). Show that Py(xz) € V and
x — Py(z) € V+, which establishes R® =V @ V.

(4) Show that Py is linear and satisfies that Py o Py = Py.

(5) In general, if R” =V & W, then n = dim(V) 4+ dim(W). Start with
bases for V' and W and use them to construct a basis for R™ to establish
this result. It follows that n = dim(V) + dim(V*) for any subspace
V C R™.

2 Projections

Let V be a vector space and T : V — V a linear map. We say that T is a
projection if 72 = T. Intuitively, we can think of T as projecting onto its
image. After we apply T once, the resulting vector is already in the image,
so a second application does not change the result. If you like fancy words,
projections V' — V are the idempotent elements of the ring End(V) of linear
endomorphisms on a vector space.

Our previous discuss established that the orthogonal projection operator Py is
a projection in this abstract sense.



(1) Show that if T : V' — V is a projection, then V = im(T) & ker(T).
Hint: use the trick of adding and subtracting the same thing that we
used in (3) above.

(2) Show that if A ~ B, then Tr(A) = Tr(B). It is easiest to first show
Tr(AB) = Tr(BA), and then apply this to the case of similar matrices.

Given any linear map 7' on a finite-dimensional vector space V', we can
take its matrix representation [T]g with respect to any basis 8. The
change of basis formula tells us that [T]g ~ [T], for any two bases «
and (8 of V. This means that [T]s = P[T],P~! for some invertible

matrix P.

Therefore, the trace of the matrix representation of any linear transfor-
mation is the same, so we can define this common value as the trace of
the linear transformation.

(3) Show that if T is a projection then Tr(T) = dim(im(7")).
Hint: use the decomposition V' = im(7")@ker(T') and compute the matrix

representation with respect to the basis for im(7") @ker(7") that we found
in (5) of the section on orthogonality.
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Abstract Vector Spaces

Recall that an abstract vector space consists of a set of “vectors” along with op-
erations of vector addition and scalar multiplication that satisfy certain axioms.
The axioms that these operations satisfy force vector spaces to behave similarly
to R™. If you take a course on algebra, you'll see that a vector space can be
thought of as an abelian group along with scalar multiplication (this is how I
remember the definition, for example). Let us go over some common examples
of vector spaces.

Example 1: The set of m x n matrices over R, denoted Mat,,,x,(R) forms a
vector space. NB: When I say that this set forms a vector space, what I mean is
that this set along with certain canonical addition and scalar multiplication op-
erations forms a vector space. There may be multiple ways to equip a set with a
vector space structure, but most of the time it is obvious what choice is intended.

Your job is to describe the canonical addition and scalar multiplication opera-
tions on Mat,,x,(R) and prove that they fulfill the axioms of a vector space.
What is the dimension of Mat,,, «,,(R)? Exhibit an explicit basis for Mat,, x, (R).
Hint: there is a reason that Professor Riehl uses the alternative notation R™*"™
for Mat,, xn(R).

Example 2: Let V be a vector space over R. Recall that a subspace of V is
a subset W C V which is closed under linear combinations. This means that
awy + bwy € W for wy,ws € W and a,b € R.

Given a finite collection of vectors {vi,...,v,} C V, we define the span of the
vectors as the set of linear combinations {>__; a;v; | a; € R,1 <i < n}. Show
that the span of such a collection of vectors forms a subspace of V.

Next, suppose that W7 and W5 are subspaces of V. Show that their intersection
W1 N Wy is a subspace of V.

Example 3: The complex numbers C form a vector space over R. Recall that
C = {a+bi|a,beR}. Describe the addition and scalar multiplication opera-



tions on C. What is the dimension of C as a vector space over R?

Example 4: The set Q(v/2) = {a + v2b | a,b € Q} forms a vector space
over Q. Find a basis and give the dimension of Q(1/2). This is an example of
a number field, which are the central objects of study in algebraic number theory.

Example 5: The set C([a,b]) of continuous functions [a, ] — R form a vector
space over R. Show that C([a,b]) is infinite dimensional. Hint: Find linearly
independent polynomials on [a, b].

Example 6: This example covers a topic more advanced than all of the others,
but I think it is a fun example of how varied the structure of vector spaces can
be. It’s definitely beyond the scope of the course, but it might be interesting to
those of you interested in higher level math.

The set of all polynomials over R with variable z, denoted R]z], is an infinite-
dimensional vector space over R. However, if we restrict our polynomials to
have degree at most n, then we obtain an n + 1-dimensional vector space. It
turns out that vector spaces arising from polynomials are extremely important
in mathematics. An additional important construction is the quotient space
Rlz]/(p(x)), where p(x) € R[z]. We can think of this space as being the set of
polynomials over R where two polynomials are considered to be equivalent if
their difference is a multiple of p(x) by another polynomial g(z).

For example, we can consider R[z]/(z% + 1), which turns out to be the same (in
some technical sense) as the complex numbers C. Let me briefly explain this
connection.

Let f(x) € R[z]. We can use polynomial long division to divide f(z) by 2% + 1.
This gives f(z) = (22 + 1)g(z) + r(z), where ¢(x) is just some polynomial and
r(z) (the remainder) is a polynomial of degree less than two.

It follows that f(z) — r(z) = (2% + 1)g(x), so f(z) is equivalent to the linear
polynomial 7(z). Further, it is clear to 22+ 1 is a multiple of itself, so (z2+1)—0
is a multiple of 22 + 1 as well. This means that 22 4 1 is equivalent to 0, or in
other words, 22 = —1.

Therefore, R[x] /(2 + 1) consists of all linear polynomials a + bz, where a,b € R
and 22 = —1. The complex numbers consist of all a + bi, where a,b € R and
i? = —1. Therefore, R[z]/(x? + 1) is the same as C by simply changing our

variable from z to 1.

The technical terminology would be to say that R[z]/(z? + 1) is isomorphic to
C as fields.
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Midterm Solutions

These solutions are a supplement to my recitation section. I focus on the con-
cepts involved in solving the problems more than the actual midterm problems
in these notes. These notes are not meant to be a template for what your
solutions on exams should look like. I leave out many explicit details and cal-
culations that should be written in detail on an exam (because these will be
written on the blackboard in the actual recitation section!)

Problem 1: There are several ways to solve a system of linear equations of the
form Ax = b. Because our coefficient matrix A is already close to being in row
reduced echelon form, the easiest way to find the set of solutions is to compute
the RREF of the augmented matrix of A, and write the set of solutions
parametrically, with the parameters varying over the free variables. Remember,
when solving Az = b we must compute the RREF of the augmented matrix. If
we simply compute RREF(A) and append our right-hand-side vector, we end
up with a different system of equations (see if you can come up with an example
to verify that this is true).

Let me describe another way to solve systems of the form Axr = b, A €
Mat,,xn(R), b € R™, which uses the concepts of bases and subspaces. First,
observe that the set of solutions to Az = b is an affine subspace of R™, that
is, some translate of a genuine subspace of R™. Indeed, suppose that Ay = b
and let z be an arbitrary solution to our system. Then, y — z € ker(A), hence
z € y + ker(A). Therefore, to find all of the solutions to Az = b, we need to
find all of the solutions to Az = 0 and a single particular solution to Az = b.
Because ker(A) is a subspace of R™, it has a basis, so we can find the kernel
of A by finding a basis and taking linear combinations. As we progress in this
course and become more comfortable with bases and subspaces, you will see
that computing bases for the image and kernel of a linear transformation are
intimately related to row reduction.

Problem 2: Recall that a function T' : R® — R™ is linear if and only if
T(azx + by) = aT(z) + bT(y) for all a,b € R and z,y € R”. Many students



only verified that linearity holds for a particular choice of scalars and vectors.
To establish linearity, we must show the linearity identity holds for arbitrary
vectors and scalars. Another way to show T is linear is to show that there exists
a matrix A € Mat, x,(R) such that T'(z) = Az, for all z € R™.

This gives us two ways to approach this problem. First, we need to make sure
that we understand what the function in question actually looks like concretely
before attempting to verify its linearity. The function R* — R sends a vector
v € R* to its dot product with the column vector (3,0,1,—2)”. Recall that
the dot product of two vectors is obtained by multiplying entries coordinate-
wise and then summing everything up.

Therefore, given an arbitrary v = (v1,v2,v3,v4)7 € R?, its dot product with
(3,0,1,—2)T is 3v; + Ovy + v3 — 204 = 3v1 + v3 — 204.

The easiest way to see this function is linear is by observing that taking the dot
product of two column vectors x,y € R" is the same thing as computing the
product x7y. Therefore, the function f in question is represented by the matrix
(3,0,1,—2) in the sense that f(z) = (3,0, 1, —2)x for all z € R*.

Another way to see the function is linear is by verifying the linearity iden-
tity. This follows immediately by the properties of the dot product. Indeed,

x - (ay1 + by2) = a(x - y1) + b(x - yo).

Problem 3: Recall that by definition the image of a matrix A € Mat,, xn(R)
is the set im(A) = {Az | € R"}. One can verify that this is the same as the
set span{ay,...,a,}, where a; is the vector defining the ith column of A.

Because the second row of the matrix A in question consists entirely of zeros,
any element of the image of A must have a zero as its second coordinate. This
means that (1,1,1,1)7 cannot be in the image because 0 # 1.

Most people did quite well on this question. Some of the common mistakes were
confusing the image and kernel of a matrix and incorrectly using row reduction
to solve the system Az = b. Remember, you must row reduce the augmented
matrix, not the coefficient matrix, when solving a system by row reduction.

Problem 4: We are asked to find the kernel of a 2 x 2 matrix. Recall that for
a square matrix A, ker(A) = {0} (we say A has trivial kernel) if and only if A is
an invertible matrix if and only if the determinant of A is non-zero. Therefore,
if our matrix in question is invertible, we know that it must have trivial kernel.

Last section, I went over many different ways to determine whether a square
matrix A is invertible. Let me list them here for your convenience:
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Explicitly exhibit some matrix B such that AB = BA=1.
Show that the determinant of A is non-zero.

Show that RREF(A) = 1.

Show that ker(A) = {0}.

Show that A defines an injective map.

Show that A defines a surjective map.

Show that A defines a bijective map.

Show that A defines an invertible map (in the sense of functions).

© e N o o W N

Show that the columns of A are linearly independent.

_.
e

Show that the rows of A are linearly independent.

—_
—_

. Show that A has full rank.

_
[N

. Show that the image of A is the entire codomain (A does not collapse our
domain into a lower dimensional space).

I think that it is a really good exercise to try to think about why all of these
conditions are equivalent. Some implications such as 9 = 10 or those saying
that injectivity or surjectivity on their own imply bijectivity are non-trivial.
Several implications are just directly rewriting things in different language.

We can easily compute the determinant and verify it is non-zero. Therefore, A
is invertible and its kernel must be just the zero vector.

Problem 5: This was the hardest question on the midterm in my opinion.
It involves a solid understanding of the concepts of function composition and
invertibility.

A common mistake was composing the functions in the wrong order. Recall
that the function f in go f “acts first,” however, when presented with compos-

ite function described diagrammatically, the leftmost function “acts first.”

For example, if we have f : A — B and g : B — C, we obtain the composite
gof:A—=C.

We can describe this information diagramatically as:
o f g
gof=A—=B=C.

Notice that in the diagram f appears on the left while in the standard notation
it appears on the right. If f: A — B and g : B — A, both of the compositions



fogand go f are well-defined, so we need to be careful that we do them in the
right order.

For our specific problem, we are given T4 : R? — R defined by the row vector
(2,3,4). This is the function that sends x = (21, x2, x3) — 221 +3z2 +4z3. Our
function T : R — R? is defined by the column vector (7, —6,5)7. This means
that Tg(a) = (Ta, =6, 5a)T for any o € R.

The composite function is a map R? — R?, so when we write down its matrix,
we better end up with a 3 x 3 matrix.

Let ¥ = (21,72,73)7 € R3. As before, Ta(z) = 221 + 3w + 423. This is the
scalar that we will now feed into Tg.

Observe that:

Tp(Ta(x)) = (7(221 + 322 + 433), —6(271 + 379 + 423), 5(221 + 322 + 423))7.
Simplifying:

Tg(Ta(x)) = (1421 + 2129 + 2823, — 1221 — 1825 — 2423, 1021 + 1529 + 2023)T.

Recall that the matrix of T = T o T4 has ith column T'(e;), where e; denotes
the ith standard basis vector.

This means that the first column of A is (14, —12,10)7, its second is (21, —18, 15)T,
and its third is (28, —24,20)7. By inspection, we can see that the columns are
not linearly independent, hence the matrix of T cannot be invertible.

That was a lot of work! Here is a far easier solution. By the rank-nullity
theorem, any linear map R” — R™ has non-trivial kernel if m < n. Therefore,
T4 : R? — R has non-trivial kernel. Any element of the kernel of T4 is also in
the kernel of Ts 0 T4 (verify this if it is not clear). Therefore, T'= T 0 T4 has
non-trivial kernel, so it cannot be invertible.
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Practice Midterm Solutions

Problem 1: There is no solution to the system of linear equations defined by
the augmented matrix because the standard basis e4 is not a linear combination
of elements of the set {e;}?_;. Phrased differently, e, is not in the image of
the coefficient matrix. We can also immediately detect the inconsistency of the
system by observing that there is a row of zeros in the coefficient matrix that
corresponds to a nonzero entry in the augmented vector.

Problem 2: Recall the general form of a matrix that reflects vectors across the
line Ly that has counterclockwise angle 6. In our case, we are first reflecting
across Lz and then across Lz. This corresponds to the composition of linear
transformations, which we know can be represented by matrix multiplication.

Basic trigonometry tells us that Ref(7) has its first column as e; and its second
as e;. Similarly, Ref(%) has first column —e; and second column ej.

Before calculating the product of these matrices, let us check that these matrices
actually do what we want them to do. Inspection of Ref(7) tells us that when
we multiply it by a vector it just swaps the z and y coordinates, which makes
sense for a reflection over y = x. Inspection of Ref(%) tells us that when we
multiply it by a vector, it negates the = coordinate and leaves the y coordinate
unchanged, which makes sense for a reflection over x = 0.

Matrix multiplication yields that the matrix of the linear transformation defin-
ing reflection over y = x followed by reflection over z = 0 has first column eq
and second column —ej.

Note that we could have avoided touching matrices at all by recognizing that
our transformation should swap coordinates and then negate the first one. Ap-
plying this to the standard basis vectors gives the same matrix.

Problem 3: The since matrix multiplication defines a linear map, we can ob-

tain the image of e4 — %el under the matrix A as the difference between the


https://en.wikipedia.org/wiki/Rotations_and_reflections_in_two_dimensions
https://en.wikipedia.org/wiki/Rotations_and_reflections_in_two_dimensions

fourth column and % times the second column of A.

This is (3,0,2,5) — %(67 —2,4,0) = (0,1,0,5) by definition of vector addition
and scalar multiplication.

Another (albeit less efficient) way to do this problem is to write down eq — %62
explicitly and then multiply it by A. We obtain e4 — %61 = (—%, 0,0,1) and
carrying out the matrix multiplication yields the same answer as above.

Problem 4: We want to determine if e3 — e5 is in the span of the vectors e; +e5
and e + e3. It is easiest to first write our vectors explicitly in coordinates:

ez —ex=(0,—1,1), e; +e2 = (1,1,0), and e; + e3 = (1,0,1).

We then see that (0,—1,1) = (1,0,1) — (1,1,0), so recalling the definition of
span, we see that it is true that e; — eg lies in the span of e; 4+ e and ey + e3.

Another way to solve this problem is to do algebra with the standard basis vec-
tors. Indeed, e3 —es = (e1 +e3) — (€1 +€2), so we arrive at the same conclusion.

Problem 5: In general, a diagonal (or even upper triangular) matrix is invert-
ible if and only if all of its diagonal entries are nonzero because the determinant
of such a matrix is the product of its diagonal entries. This is a useful fact and
tells us our matrix is invertible, but completely overkill for this problem.

Instead, we can explicitly exhibit an inverse matrix by considering the matrix
whose diagonal elements are the reciprocals of those of our original matrix A.
So, define B = diag(%7 %, -1, i) It is easy to verify that AB = BA = I,.

We could also row reduce our matrix and observe that RREF(A) = I4, so A is
invertible.

We could also remember that a square matrix is invertible if and only if its
kernel is trivial if and only if it defines a surjective linear map. It is obvious
that the only solution to Az = 0 is the zero vector, so A is invertible.

We can show A defines a surjective map by noting that given any vector
(21,72, 23,24) € RY Ay = 2, where y = (%xl, %1'2, —1lxs, %m).


https://en.wikipedia.org/wiki/Linear_span
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1 Invertible functions

We say that a function f: A — B is invertible if there exists an inverse func-
tion g : B — A such that go f =id4 and fo g =1idg.

Exercise: Show that the inverse of an invertible function is unique. That is,
show that if there exists g1, g2 : B — A such that g; 0o f =id4 and fog; =idp
for 1 <i <2, then g; = go.

The previous exercise tells us that we can speak of the inverse of a function
f: A — B, which we denote f~!: B — A.

Let us practice with the notion of invertibility by doing some concrete examples:

1. Consider the function f : R — R given by f(z) = 2% Is f invertible?
If so, find f~!. What if we modify the domain and codomain and consider
f:RT — R* with x — 22?

2. Consider the function f : R — R given by f(z) = 22+ 1. Graph the function
f and determine if it is invertible. If f is invertible, find its inverse f~1.

3. Consider the linear function T : R? — R? defined by T(e;) = (1,0) and
T(e2) = (4,3) (by last week’s notes, this uniquely defines a linear function!).
Is T invertible? If so, find 7-!. Hint: find the matrix [T] representing 7" and
determine whether it is invertible.

It is not always obvious whether a function f is invertible or not. Indeed, from
the given definition of invertibility, we need to construct an inverse function or
prove that such a function cannot exist. This definition is somewhat external
to our starting function f. The following section will provide a different char-
acterization of invertible functions.

We say that a function f : A — B is injective provided that, for all a,b € A,
if a # b then f(a) # f(b). In other words, f sends distinct elements to distinct



values. Such functions are also called one-to-one functions sometimes. In high
school, you likely learned about the horizontal line test, which says that a func-
tion f: R — R is injective when any horizontal line intersects the graph of f in
at most one place.

Exercise: Prove that the composition of two injective functions is injective.
In other words, show that if f : A — B and g : B — C are injective, then
go f: A— C is injective.

We say that a function f : A — B is surjective if for every b € B there exists
some a € A such that f(a) = b. We can think of such a function as one that
“hits” everything in the codomain in the sense that the range of f is all of B.
We also call surjective functions onto (this comes from thinking of surjections as
mapping onto the entire codomain). Note that the codomain we be restricted
to force a function to be surjective (look at the first example we did above).

Exercise: Come up with an example of a surjective function and a non-surjective
function. You should write the function in the form f: A — B, x — f(z) to
emphasize the domain and codomain in the definition.

We now have the language to give an equivalent definition of an invertible func-
tion. We say that a function f : A — B is bijective if f is both injective and
surjective. By considering the definitions of injective and surjective, we see that
f is bijective provided that for each b € B there exists a unique ap € A such
that f(ap) =b.

Exercise: Prove that a function f : A — B is invertible if and only if f is bijec-
tive.

Because linear transformations (and matrices) can be viewed as just special
types of functions, this tells us that we can determine whether a matrix is
invertible by looking at its associated linear transformation and checking if it is
bijective.
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1 Understanding Linearity

Recall that a function T : R™ — R™ is linear if T'(az+by) = oT'(x)+bT (y) for all
a,b € R and z,y € R". Furthermore, any linear function can be represented by
a matrix. More precisely, if T : R™ — R is a linear transformation, then there
exists a unique matrix A € Mat,,«,(R) such that T'(z) = Az for all x € R™.
Recall from your lectures that the matrix representing 7" is precisely the matrix
whose ith column is T'(e;), where e; denotes the ith standard basis vector in R™.

Because any matrix A € Mat,,«,(R) defines a linear map Ty by Ta(x) = Ax,
linear transformations and matrices are “the same thing.” Indeed, given a linear
transformation, I can construct its associated matrix, and given a matrix, I can
construct its associated linear transformation. These constructions are inverses
of one another.

Exercise: Verify that T4 as defined above is a linear transformation.

Let A € Mat,,«x,(R) be a matrix with columns x1,...,x,. Observe that when
we multiply A by a vector y we obtain Ay = >""" | y;x;, where y = (y1,...,Yn)-
Therefore, multiplying a matrix by a vector is determined by multiplying its
columns by the corresponding coordinates of the vector and adding everything
together. Similarly, a linear transformation 7" is determined by its values on the
standard basis {e1,...,en}.

Exercise: Explain to a peer why linear transformations are determined by their
values on the standard basis.

Exercise: Let us make the previous exercise more formal. Suppose that the func-
tions 77, T5 : R™ — R™ are linear transformations. Suppose that T (e;) = Ta(e;)
for all 1 < i < n. Show that T (z) = Ta(x) for all z € R™.

Exercise (Challenge!): Let x1,...,2, € R™. Show that there exists a unique
linear transformation T : R® — R™ such that T'(e;) = x; for 1 < i < n. More
generally, if £1,...,0, is any basis of R™, then there exists a unique linear




transformation T : R™ — R™ such that T(8;) = T'(z;). If you take an abstract
algebra course in the future, you'll recognize this exercise is stating the uni-
versal property of free modules. If this exercise makes no sense right now, try
revisiting it in a couple weeks as preparation for the first midterm.

NB: The above exercise show that it makes sense to talk about the linear trans-
formation T : R™ — R™ such that T'(e;) = z;.

2 Finding the matrix of a linear function

Suppose that I tell you 7T is a linear function R? — R? such that T'(e;) = (2,0)
and T'(ez) = (0,1). What should its corresponding matrix look like? Well, in
lecture Professor Riehl proved that the corresponding matrix should have its
first column as (2,0) and its second as (0, 1).

Note: when I write (z1,...,2,), I really mean the column vector obtained by
writing the tuple vertically. It is easier to type the ordered tuples.

This is pretty straightforward. If T give you the values of T'(e;), these just be-
come the columns of the corresponding matrix. Let us make things a little bit
harder.

Exercise: Suppose that 7 : R? — R? is the linear transformation that satisfies
T(2,0) = (1,0) and T'(2,1) = (3,4). Find the matrix corresponding to T

Hint: express the standard basis vectors in terms of (2,0) and (2,1) and then
use the linearity of 7" to find T'(e1) and T'(e3).

Exercise: Suppose that 7 : R? — R? is the linear transformation that satisfies
7(1,0,0) = (0,1,4), T(1,1,0) = (2,3,1), and T(0,0,2) = (1,0,4). Find the
matrix corresponding to 7.

Exercise: Does it make sense to talk about the unique linear transformation
T : R? — R? such that T(1,0) = (4,1) and 7/(2,0) = (0,1)? Why or why
not? How about the unique linear transformation such that 7'(1,0) = (2,1) and
7(2,3) = (5,60012)7
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1 Dimension

The notion of the dimension of a vector space is fundamental to linear algebra.
We have not yet formally introduced this concept, but we can still think about
what the “right” definition should be. For example, we all agree that a sheet of
paper is a 2-dimensional object and the world around us is 3-dimensional space.
In mathematical language, we are essentially saying that R? is 2-dimensional
and R? is 3-dimensional. This makes sense because it takes 2 coordinates to
uniquely specify a point in the plane and 3 coordinates to uniquely specify a
point in R3.

Although it might be tempting to think that any collection of points in, say, R?
should be regarded as a 3-dimensional space because to specify any point in R3
requires a value for x, y, and z, this does not capture our intuition that lines
are 1-dimensional and planes are 2-dimensional.

Consider the line L = {t(2,3,4) € R? | t € R}. While each point on this line lies
in R?, once we understand that the line is just multiples of the vector (2,3,4),
we can actually uniquely specify any point on the line by giving the scale factor
t. Therefore, if we are smart about how we view the line, we only need to specify
1 value to give points on it, so the line should be a 1-dimensional object.

Let us try a more complicated example. Consider the equation x + 2y + 3z = 0.
What sort of geometric object does the set of solutions to this equation define?
Compute the dimension of the set of solutions. Find a collection of vectors such
that every solution to the above equation can be written uniquely as a linear
combination of the chosen collection. What does this collection have to do with
the dimension?

(Recall that if {vq,...,v,} is a collection of vectors in R™, then a linear combi-
nation of the vectors vy, ..., v, is a vector of the form Y. | a;v;, where a; € R.
For example, if v; = (1,2) and va = (3,4), then 2(1,2) + 3(3,4) = (11,16) is a
linear combination).




We will see later on that a collection of vectors 8 such that every vector in a
vector space V (think R™ for now) can be written as a unique linear combination
of elements of 8 is called a basis for V', and every vector space has a basis.

Next, let us understand how the dimension of the solutions to an equation of
the form Az = b is related to the dimension of the solutions to an equation of
the form Az = 0.

Show that every solution to Az = b can be written as the sum of a fixed vector
v and a solution to Az = 0. We call the set of solutions to Az = 0 the kernel of
A, so we can restate this as saying that any solution to Ax = b can be written
as the sum of a fixed vector v and an element of the kernel of A.

Explain to your group how to compute the kernel of a matrix using Gauss-Jordan
elimination (row reduction).

2 Linear transformations

We say that a function T : R” — R™ is linear provided that T'(ax + by) =
aT'(x) 4+ VT (y) for all vectors z,y € R™ and scalars a,b € R. You will see later
on that any linear transformation can be represented by a matrix, which makes
them particularly nice objects to work with.

The key insight to the connection between linear transformations and matrices
is that a linear transformation is entirely determined by its values on a basis.
An example of a basis for R™ is the standard basis, consisting of the vectors
€1,...,en, where e; is the vector whose ith component is 1 and every other
component is 0.

Explain how every vector v € R™ can be written in terms of the standard basis.

Explain how knowing the value of a linear map T on the standard basis allows
us to know the value of T for every vector in R™. Put differently, if I give you
the vectors T'(e1),...,T(e,), how can you figure out the value of T'(v), where v
is an arbitrary vector in R™.

If all of the abstraction and notation is confusing, try writing down simple
examples for a linear transformation 7 : R? — R. For example, consider the
linear transformation 7' : R? — R that satisfies T'(1,0) = 2 and 7'(0,1) = 1.
Find the value of T'(3,4) using linearity. Can you find a 1 x 2 matrix A such
that Az = T'(x) for all 2 € R??
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1 Introduction

Hello everyone, I'm Ben Marlin and I will be your TA for linear algebra this
semester. I'm a fourth year undergraduate pursing a BA/MA in mathematics
and a BA in philosophy. You can reach me by email at bmarlin1@jh.edu. Please
feel free to reach out with any questions concerning course content or logistics
and I will get back to you as soon as possible. I will be holding office hours
through the Learning Den from 7-9pm in Gilman 313. Bring any questions
about linear algebra (or math in general), and I’ll be more than happy to help!

2 Systems of linear equations

Linear equations and the maps that define them are of central importance to
linear algebra. In this course, you will learn about the properties of such sys-
tems and how to systematically solve them. Before giving a formal definition,
let me give a few examples.

1. Consider the system of equations:

3x+6y=3

3x+Ty=4
This is a system of linear equations with two equations and two “unknowns”
(variables). We can solve it by “eliminating variables” (which you probably

learned in high school). Subtracting the first equation from the second gives
the system

x4+ 6y =3
y=1

from which it is easy to see that (x,y) = (—1,1) is the unique solution to the
system.



2. Consider the system of equations:

T+2y+32=7
3x+4y+z2=5

This is a system of linear equations with two equations and three “unknowns.”
We can proceed similarly. Subtracting three times the first equation from the
second equation yields

r+2y+32="7
—2y —8z=-16

We can then divide the second equation by —2 to obtain

T+2y+3z=7
y+4z =28

We will now choose a value for z and use this to find the values of x and y such
that (z,y, z) is a solution to the system. For simplicity, choose z = 0. We then
see that

r+2y="7
y=38

so by substituting in y = 8, we find that (—9,8,0) is a solution. Note that
this solution is not unique! By choosing z = 1 and arguing as before we see
(—4,4,1) is another solution. In fact, since both (—9,8,0) and (—4,4, 1) satisfy
the system, if we subtract the latter from the former we obtain (—5,4,—1),
which is a solution to the system

T+2y+32=0
3x+4y+2=0

(think about why the above statement is true). Therefore, if @« € R then
(—9,8,0) + a(—5,4,—1) is a solution to our system (think about why this is
true). In particular, the system of equations has infinitely many solutions.

Exercise 1: Explain to a peer conceptually why the first system of equations
has a unique solution and the second has infinitely many solutions.

Exercise 2: Explain to a peer why our method of “eliminating variables” does
not change the set of solutions to the linear systems. This fact is crucial to the



method of Gauss-Jordan elimination, and you will later see that it is a conse-
quence of the invertibility of so-called elementary matrices.

Exercise 3: Does every system of linear equations with 2 equations and 2 un-
knowns have a solution? How about n equations and n unknowns, where n is a
positive integer?

Exercise 4: Write down a system of equations with 3 unknowns and 4 equations
and find a solution to it.

2.1 Reframing the problem using matrices

I will freely use standard mathematical notation in this section so that you can
practice reading and writing mathematical prose. Try to figure out what the
notation means by context, and please ask me if it is unclear.

Let us now treat systems of linear equations in a slightly more formal way. A
linear system of equations is a set of equations of the form

a1121 + a12%2 + - + A1 Ty = by

2121 + a2 + - -+ + A2p Ty, = b

Am1T1 + p2X2 + -+ AmppTn = bn

where for 1 <¢ <mand 1 < j < n, a;; and b; are real numbers. More gener-
ally, we can take our coefficients to be elements of a field (you’ll learn what this
means later on).

Using matrices and vectors, a linear system with m equations and n unknowns
can be written as Az = b, where A € Mat,,x,(R) is an m x n matrix, and
r € R" and b € R™ are vectors. We can view (r1,...,2,)7 = 2 € R" as
a vector of unknowns and b = (by,...,b,)7 as a vector of the right-hand-side
coefficients. One can check that the equation Az = b with A = (a;;)mxn defines
the same system of linear equations as our above system.

By using the matrix form Az = b of a system of linear equations, we can use the
theory of matrices and linear transformations (what linear algebra is all about!)
to determine how many solutions a given system has and then find them.

Exercise 5: Suppose there exists a solution to the system of linear equations
given by Arz = b. Prove that the solution is unique if and only if there is a
unique solution to the system given by Az = 0.




2.2 Preview of what is to come

Disclaimer: The material in this section is extra and entirely optional. It is
written at a higher level than the previous sections and presupposes some fa-
miliarity with linear algebra. It may be useful to look at later.

Let me explain how we can use linear algebra to understand systems of linear
equations given as Az = b for A € Mat,,«n(R). Suppose there exists some
y € R™ such that Ay = b. If = is another solution, then Az = Ay, implying
A(x — y) = 0. Therefore, given a particular solution y, all of the solutions
Ax = b arises as y + w, where w is a solution to Ax = 0. If we denote the set
of all solutions to Az = 0 by ker(A), then the set of all solutions to Az = b is
given by the set y + ker(A) := {y + w € R™ | w € ker(A4)}.

Therefore, we have reduced the problem of finding all solutions Az = b to find-
ing a single solution of Ax = b and all of the solutions to Az = 0. Both of
these are possible by bringing A to its row reduced echelon form (also known
as Gaussian elimination). Moreover, because ker(A) is a subspace of R", it has
a basis and we can write all of its elements as linear combinations of finitely
many basis vectors. Since we can find a basis for ker(A) using row reduction,
solving Az = b can be completely dealt with using row reduction.

Some other observations are in order. If A € Mat,,x,(R) and ker(A) = 0, there
exists a unique solution to Ax = b, for any b € R™. Indeed, by the rank-nullity
theorem, a trivial kernel implies that A is invertible, so = A~!b is the unique
solution to the linear system. Furthermore, we can compute A~! using Cramer’s
rule to give a precise solution using determinants.

We can also say some interesting things when A is not square. If A € Mat,,, x (R)
and n > m, then ker(A) # 0. Indeed, if ker(A) = 0 then A can be viewed as
an injective linear map R™ < R™, which implies there is an n-dimensional
subspace of R™. But this contradicts n > m because subspaces of R™ have
dimension < m. Therefore, presented with a system of equations with n un-
knowns and m equations, n > m, if a solution exists then there are infinitely
many solutions.


https://en.wikipedia.org/wiki/Cramer%27s_rule
https://en.wikipedia.org/wiki/Cramer%27s_rule
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