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Review

Main theorems

. Lagrange’s theorem

. Cayley’s theorem

Cauchy’s theorem

Isomorphism theorems (which come from the universal property of the
quotient) and the correspondence theorem

Orbit-stabilizer lemma
Sylow’s theorems

Fundamental theorem of finitely generated abelian groups

We do not write out the details of these theorems here because they can be
found easily in any textbook or online. You should know the statements of all
these theorems and have basic facility with them. Most problems you encounter
will use at least one of these theorems in some way.
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Concrete examples

(In)finite cyclic groups Z/nZ for each n > 0.

e Subgroups of cyclic groups are cyclic. There is a unique subgroup
of Z/nZ of order d for each d | n. Subgroups of cyclic groups are
characteristic.

e Chinese remainder theorem: Z/nZ x Z/mZ = Z/nmZ if and only if
n and m are coprime.

Group of units (Z/nZ)* = Aut(Z/nZ).

Dihedral groups D,, for n > 3.



e D, is a group of order 2n consisting of n rotations and n reflections.
It is generated by r and s subject to the relations s> = 1 and srs =
r~!. The dihedral groups are a common source of examples and

counterexamples.
4. Symmetric groups S, for n > 3.

e Every permutation can be written uniquely as the product of disjoint
cycles. The order of a permutation is the least common multiple of
its disjoint cycle lengths.

e Elements of S, are conjugate if and only if they have the same cyclic
type. That is, they have the same multiset of disjoint cycle lengths.
The conjugacy class of o € S, splits into multiple conjugacy classes
in A, if and only if the cycle decomposition of ¢ is a product of
distinct cycles of odd length.

e Any permutation can be written as the product of 2-cycles (transpo-
sitions). If a permutation is a product of an even number of trans-
positions we call it even and if it is the product of an odd number of
transpositions we call it odd. The collection of all even permutations
of S, form a group called the alternating group A,. There is a sign
homomorphism sgn : S, — {—1,1} sending a permutation to %1
depending on its parity. We can realize A,, as the kernel of this map.

e The commutator subgroup of S, is A,.
5. Alternating groups A,, for n > 3.
e A, is generated by 3-cycles. This fact is used to show that the
commutator subgroup of S, is A4,,.
e A, is simple for n > 5. In fact, A5 is the smallest non-abelian simple
group at size 60.

6. Group of quaternions Qg.

e (g is a non-abelian group of order 8 not isomorphic to D4. It is
often a source of counterexamples. For example, (Jg is an example of
a non-abelian group where nonetheless every subgroup is normal.

7. Matrix groups such as GL,(R), SL,(R), and SO, (R) among others.

It may be a useful exercise to see if you can compute the conjugacy classes,
center, commutator subgroup, and abelianization of these concrete examples.
Understanding concrete examples and the main theorems of the course well will
be very helpful for the final exam.

In the next few sections, we review some miscellaneous topics that could be
useful.
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Group actions

Definitions and remarks: Recall that a (left) action of a group G on a set X is
a function G x X — X such that ex = = and (gh)z = g(hz) for all x € X and
g,h € G. Equivalently, it is a homomorphism G — Sym(X). If G acts on X,
we define the orbit Gx = {gz | ¢ € G} and the stabilizer G, = {g | gz = =}
for all z € X. As a consequence of the orbit stabilizer lemma and Lagrange’s
theorem, if G is a finite group, then the size of any orbit or stabilizer divides
the order of G. In particular, the size of any conjugacy class of G divides the
order of G.

We give some important examples:

e Any group G acts on itself by conjugation. The orbits of this action are
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precisely the conjugacy classes of G. The stabilizers are precisely the
centralizers of elements of G.

Any group G acts on itself by left multiplication. By considering the
homomorphism induced by this action, we immediately get Cayley’s the-
orem.

If H < G, then G acts on the collection of left cosets of H by left mul-
tiplication. Equivalently, there is a homomorphism ¢ : G — Sym(G/H).
Very often, if you encounter a problem where you are given some infor-
mation about the index of a subgroup, it is a good idea to consider this
homomorphism. The kernel of ¢ is precisely core(H) = seG gHg .

Center and commutator subgroups

. Recall that if G is a group then Z(G) consists of all elements of G that

commute with all other elements. In other words, it is the kernel of the
homomorphism induced by the action of G on itself by conjugation.

e An important fact about the center is that finite nontrivial p-groups
have nontrivial center. This a consequence of the class equation (see
if you can prove it!)

e Another useful fact is that if G/Z(G) is cyclic then G is abelian. This
fact can be used to show that any group of order p? for a prime p is
abelian (you should definitely know this latter fact).

. Recall that if G is a group then its commutator subgroup [G,G] is the

subgroup generated by all commutators, i.e., generated by elements of the
form a='b~lab. It is easy to verify that [G,G] is characteristic, hence
normal in G.

e The commutator subgroup has a special property: G/[G, G] is abelian
and if H is any normal subgroup such that G/H is abelian then
[G,G] C H. This tells us that [G, G] is the smallest normal subgroup
with an abelian quotient. We call G/[G, G] the abelianization of G.
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e This property is often useful for computing the commutator subgroup
directly. For example, let us see how to prove [S,,S,] = A,. First,
note that A, is generated by 3-cycles and any 3-cycle can be written
as a commutator. Thus, A, C [S,,S,]. How do we see the other
inclusion? Well, S,,/A,, & Z /27, which is abelian, so [S,,S,] C 4,,.

Results on normal subgroups

Suppose H < G. If [G : H] = 2, then H is normal in G.

Suppose G is a finite group and p is the smallest prime dividing the order
of G. Then, any subgroup H such that [G : H] = p is normal in G.

Suppose H < . Then, H is normal if in G if and only if H is a union
of conjugacy classes. Note, however, that it is possible to have a union of
conjugacy classes that is not a group at all, i.e., it is important we assume
H < @ for this to work.

Suppose H < G and consider the action of G by left multiplication on
the set of cosets G/H. This induces a map ¢ : G — Sym(G/H) with
ker(p) = core(H) :=(,cq gHg™!. In particular, if H is of finite index in
G, then there exists a finite index normal subgroup of G contained in H.

Normality is not transitive in general. However, if H is normal in G and
K is characteristic in H, then K is normal in G.

Product groups:

1.

1.

External direct product: If G and H are any groups, we can form their
product group G x H with multiplication given coordinate-wise. Product
groups play a prominent role in many classification problems such as the
classification of finitely generated abelian groups.

. Internal direct product: How can we identify when a group is isomorphic

to an external direct product? We say that G is an internal direct product
of subgroups H and K if G = HK, HN K =1, and H and K are normal
in G (this last condition is equivalent to hk = kh for h € H and k € K).
If G is an internal direct product of H and K, then G = H x K.

Practice Problems

Suppose that G/H = K for some groups G, H, and K. Is it true that
G = K x H? Prove or give a counterexample.

2. Is the image of a group homomorphism always a normal subgroup? Prove

or give a counterexample.
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If G and H are groups, we can form their direct product G x H. Are all
subgroups of G x H of the form Gy x Hy for some Gy < G and Hy < H?
Prove or give a counterexample.

Prove that R/Z =2 S, where S* is the circle group.
Prove that (Q,+) is not finitely generated.

Prove that there are no simple groups of order 81.
Prove that there are no simple groups of order 750.
Prove that there are no simple groups of order 20.
Classify all groups of order 77.

Compute the abelianization of D,, for n € N. Hint: consider the cases of
n odd and n even separately.

Suppose that G is a group with normal subgroup N. Further, suppose N
has a unique subgroup H of order k for some k € N. Prove that H is a
normal subgroup of G.

Give an example of a group G such that G = [G, G].
Prove that Qg is not isomorphic to Djy.

Prove that any non-abelian group G of order 6 is isomorphic to S3. Hint:
show that G has an element y of order 2 such that (y) is not normal.
Then, consider the action of G on the cosets G/(y).

Suppose that G is an abelian group of order 2n where n is odd. Prove
that there is a unique element ¢ € G of order 2.

How many abelian groups of order 225 are there (up to isomorphism)?

Prove that any finite group is isomorphic to a subgroup of GL,,(R). Study-
ing group homomorphisms into general linear groups is the subject of
(finite-dimensional) representation theory!

Consider the set Hom(Z, Z/nZ) consisting of homomorphisms Z — Z/nZ.
Describe a natural group structure on this set. To which familiar group is
this group isomorphic? Can you describe Hom(Z*, Z/nZ) up to isomor-
phism?
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