
Integer Matrices

Ben Marlin

Introduction

The goal of this document is to compile scattered results throughout the litera-
ture on the similarity of integer matrices. We will mostly follow David Husert’s
dissertation “Similarity of Integer Matrices,” but will appeal to other sources as
necessary. Although there will be some standard module or number theoretic
results for which we do not include a proof, references will be provided that
contain full proofs. We will not focus on fully reproducing the (mostly quite
lucid) proofs of Husert, and rather we will focus on filling in the trickier details
of such proofs and adding supplementary notes. Other papers we will discuss
leave many more details out, so we will give full proofs of these results with the
details filled in.

Let R be a commutative ring. Matrices A,B ∈ Matn(R) are said to be similar
(over R) if there exists a matrix C ∈ GLn(R) such that A = CBC−1. We will
focus on the case of R = Z, where invertible matrices are precisely those with
determinant equal to±1. Our goal will be to understand when two given integral
matrices are similar over the integers, and understand how to algorithmically
test for similarity. We will also want to understand the number of similarity
classes of integral matrices of a given minimal and characteristic polynomial (so
that we can know when we have found a set of representatives of the similarity
classes). Although similarity is completely understood over a field, the problem
is much harder over Z and involves nontrivial algebraic number theory.
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1 Preliminaries

We cover the algebraic preliminaries needed for the later sections on integer
matrices. We focus specifically on the results that we need and do not attempt to
give a comprehensive review of algebra. Although the connection of some results
to matrices may not be immediately clear, their usefulness will be apparent in
later sections.

1.1 Orders and Lattices

Let R be a Noetherian integral domain with field of fractions K. For any K-
space V , an R-lattice in V is a finitely generated R-submodule M of V such
that KM = V . We may also consider R-lattices without specifying an ambient
space. Generally, an R-lattice M is a finitely generated torsion-free R-module.
Indeed, M may be viewed as a lattice in KM (its localization at R \ {0}). For
such a lattice, we define its rank to be dimK(KM).

If A is a finite dimensional algebra over K, then we define an R-order in A to
be a subring Λ of A that is also an R-lattice in A. We will most often be con-
sidering Z-orders, but occasionally this more general perspective will be useful.
Many results about Z-orders also apply to orders over Dedekind domains.

We will frequently be concerned with full modules over orders. To be explicit,
let A be a finite dimensional K-algebra and Λ an R-order in A. Let L∗ be an
A-module (which we may also refer to as a representation of A). Then, a full
Λ-module in L∗ is a finitely generated Λ-module U such that KU = L∗. We
might also call a full Λ-module a Λ-lattice. In particular, following Husert’s
notation, we will care about the situation where our finite dimensional algebra
is A = K =

⊕s
i=1Ki, L

∗ = Kn, and Λ = O is an equation order in K corre-
sponding to the characteristic polynomial of a given matrix.

There are several important observations about this case. First, since the classes
of free and torsion-free modules coincide over a principal ideal domain R, any
R-order O is R-free. Indeed, such an order is a finitely generated R-module,
and as a submodule of a (necessarily torsion-free) vector space, it is torsion-free.
Similarly, any full O-module U in Kn is Z-free of rank dimQKn. By extending
maps of full O-modules to K-linear maps Kn → Kn, we find f ∈ HomO(U ,B)
satisfies that for all u ∈ U , f(u) = Γ(u), for some Γ ∈ M(n,K) such that
ΓU = B. Essentially, all maps of full modules may be realized as block diagonal
matrices (and vice versa). See Proposition (1.1) in Husert for details.

Second, when K is a number field (so not a proper direct sum of number fields),
the full O-modules in K are precisely the nonzero fractional ideals of O in K (for
any order in a number field, its field of fractions is the number field). This will
become important later because in certain cases we will be able to use the well-
developed theory of class groups of rings of integers to understand full modules.
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Third, the number of isomorphism classes of full O-module classes in Kn is
finite, owing to the Jordan-Zassenhaus theorem, which is a vast generalization
of the classical result on the finiteness of the class number of a number field.
We will discuss this theorem in depth in a later section.

1.2 Algebraic Integers and Dedekind Domains

In this section, we will address the main properties of algebraic integers and
Dedekind domains which we will use throughout the paper. Since there are so
many properties to cover, we save space by not writing in the usual theorem-
proof format.

1.2.1 Algebraic Integers

Suppose that R ⊆ S is an extension of commutative rings. We call such an
extension finite provided that S is a finitely generated R-module. An element
s ∈ S is called integral over R (or an algebraic integer) if it satisfies a monic
polynomial over R. If every element of S is integral, then S is an integral ex-
tension. This terminology mirrors the familiar terminology associated with field
extensions.

A fundamental result in algebraic number theory is that all finite extensions of
commutative rings are integral. This is a consequence of the Cayley-Hamilton
theorem. A general form of the Cayley-Hamilton theorem asserts that for each
commutative ring R, any endomorphism of a finitely generated R-module sat-
isfies a monic polynomial over R.

Then, for any s ∈ S, we consider the map φ given by left multiplication by s. It
follows that p(s) = p(s)·1 = p(φ)·1 = 0 for some monic polynomial p(x) ∈ R[x].

It is easily verified that s ∈ S is integral if and only if the extension R[s] is
finitely generated. Since finite ring extensions are integral, this easily implies
that the set of all elements of S integral in R forms a ring called the integral
closure of R in S and denoted R̄. We say that a ring is integrally closed if its
integral closure in its field of fractions is itself.

1.2.2 Dedekind Domains

Rings of integral elements will form the motivating example for the general
notion of a Dedekind domain, which generalizes principal ideal domains to sit-
uations where unique factorization may fail.

Let K be a number field and consider the ring of algebraic integers OK in K.
We will show that OK is a Z-order in K which is Noetherian, integrally closed
domain, and every nonzero prime ideal of OK is maximal. The fact that OK

4

https://stacks.math.columbia.edu/tag/05BT


is a Z-order follows immediately from the fact that OK is a finitely generated
Z-module and contains a basis of K.

Rings of integers are Dedekind: Once we know OK is a finitely generated Z-
module, we immediately know it is Noetherian since finitely generated modules
over Noetherian rings are Noetherian. Since Z is easily verified to be integrally
closed by Euclid’s lemma (in fact, the standard argument holds for an arbitrary
GCD domain), and by induction we may prove integrality is transitive, it follows
that OK is integrally closed.

It remains to show that nonzero prime ideals are maximal. Suppose that P is
a nonzero prime ideal of OK. Let α ∈ P be a nonzero element with minimal
polynomial mα(x) ∈ Z[x] (recall that an algebraic number z ∈ Q̄ has an integer
minimal polynomial if and only if z is an algebraic integer by Gauss’ lemma).
By definition, mα(α) = 0, so a0 = −(αn + · · · + a1α) ∈ P . Since mα(x) is
irreducible, a0 ̸= 0, and a0 annihilates OK /P as a Z-module. Thus, OK /P is
an integral domain which is finitely generated and torsion as a Z-module. It
follows that OK /P is a finite integral domain (i.e., a field), so P is forced to be
maximal as desired.

Equivalent definitions: The three properties mentioned above (Noetherian inte-
grally closed domain with nonzero primes being maximal) is the definition of a
Dedekind domain. There are many important equivalent characterizations of a
Dedekind domain.

It requires a fair amount of effort to establish the equivalence of these defini-
tions. Although we will not prove the equivalence, let us describe a road-map for
the proof. One can first prove that for any integral domain a nonzero fractional
ideal is invertible if and only if it is projective. One then proves that a domain
is Dedekind if and only if every fractional ideal is invertible. To build up to the
desired result that every nonzero proper ideal factors uniquely as the product
of primes, one can prove that a domain is Dedekind if and only if every nonzero
proper ideal is the product of maximal ideals. With this preliminary result
in hand, one then proves the powerful result that a domain is Dedekind if and
only if each nonzero proper ideal factors uniquely as the product of prime ideals.

Because each nonzero fractional ideal is invertible, the collection of nonzero
fractional ideals of a Dedekind domain R form an abelian group with ideal
multiplication. The principal fractional ideals form a normal subgroup, and
quotienting by this subgroup we obtain the so-called ideal class group of R. We
will show later that if K is a number field, then the ideal class group of OK is fi-
nite. We call the cardinality of the ideal class group of OK the class number of K.

Localization of Dedekind domains are DVRs: A quick corollary of this final re-
sult is that the localization of a Dedekind domain at a maximal ideal is a discrete
valuation ring, i.e., a non-field local PID. Since the localization of a Dedekind
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domain at any multiplicative subset is Dedekind, it suffices to show that a local
Dedekind domain is a non-field PID. Let R be a local Dedekind domain with
M its unique maximal ideal. For each x ∈M \ {0}, let ν(x) be the integer such
that Mν(x) = xR, which is well-defined by unique factorization. Choose y ∈M
such that ν(y) is minimal. It follows that xR = Mν(x) ⊆ Mν(y) = yR. Thus,
x ∈ yR, implying M ⊆ yR, and M = yR by maximality. Because all ideals are
powers of the principal ideal M , we see R is a PID.

Weak approximation: We will need one further result regarding localization and
Dedekind domains. For any ideal I in a Dedekind domain R, we define its p-adic
evaluation νp(I) to be the power of p appearing in the prime decomposition of
I. For any nonzero a ∈ R, we define its p-adic evaluation νp(a) to be νp(Ra).

Alternatively, since Rp is a DVR, the unique maximal ideal pR equals (π) for
some π ∈ Rp, so any element of Rp can be written up to units as a power of π.
It is equivalent to define νp(a) to be the power of π appearing in the decompo-
sition of a in Rp. Note that if a ∈ pn and a ̸∈ pn+1 then νp(a) = n.

We can extend νp : R → Z to a map νp : K → Z by defining νp(x/y) =
νp(x) − νp(y) for x, y ∈ R and y ̸= 0. With this understanding, the Weak
Approximation theorem is a straightforward generalization of the Chinese Re-
mainder theorem for commutative rings. This theorem will play an important
role in understanding the structure of finitely generated torsion free modules
over Dedekind domains in the next section.

Semilocal Dedekind domains: The Weak Approximation theorem gives an easy
proof that semilocal Dedekind domains are principal. Suppose that I is an ideal
of a Dedekind domain R. Then, we may write I = pn1

1 · · · p
nk

k . Using the ap-
proximation result, choose a ∈ R× such that νpi

(a) = ni for all 1 ≤ i ≤ k.
Then, I = (a) and R is a PID.

“To contain is to divide” in a Dedekind domain:
Let R be a Dedekind domain with ideals I and J . Then, I | J if and only if
J ⊆ I. Clearly, if I | J then J ⊆ I. The other direction is also clearly true if
our ring is a PID. Recall that the localization of a Dedekind domain at a prime
ideal is a non-field PID. Factor I =

∏
prp and J =

∏
psp . Consider IRp = prp

and JRp = psp . Because Rp is a PID, it follows that sp ≥ rp as desired.

Ideals of Dedekind domains are generated by two elements: Again, we will use
weak approximation. We follow Proposition 4.7.7 in Cohen’s “A Course in
Computational Algebraic Number Theory.” Let I ⊆ R be an ideal in Dedekind
domain R. We prove the stronger statement that for any α ∈ I there exists
some β ∈ I such that I = (α, β).

By unique factorization, write (α) =
∏r

i=1 p
ai
i . Because “to contain is to divide,”

write can write I =
∏r

i=1 p
ei
i for ei ≤ ai. Now, by weak approximation, choose
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some β ∈ R such that νpi(β) = ei for each i. It follows that β ∈ I. Then, if we
set I ′ = (α, β) = αR + βR, we see that νpi(I

′) = min(νpi(α), νpi(β)) = ei and
for any prime ideal q not containing α, νq(I

′) = 0. Thus, I = I ′ and we are done.

UFD if and only if PID in a Dedekind domain: It is well know that every PID
is a UFD, so we only need to prove the forward implication. Because we have
a prime factorization of every ideal, it will suffice to prove that each prime is
principal. Let p ⊆ R be a prime ideal. Let 0 ̸= α ∈ p and factor α = p1 · · · pk
into irreducibles. It follows that (p1) · · · (pn) ⊆ p, hence (pi) ⊆ p for some i.
Because R is a UFD, irreducibles are prime, so (pi) is a prime ideal, and by the
Dedekind condition it is maximal. It follows that p = (pi).

There are no non-maximal Dedekind orders in a number field:
Given a number field K, we will refer to OK as the maximal order in K. In-
deed, because finite extensions are integral, OK contains any order. We already
showed that OK is Dedekind, and we will now show that if O ⊊ OK is an order,
then it contains a non-invertible ideal.

Consider the quotient OK /O, which has cardinality m ∈ Z>0. It is easy to
check that mO is an ideal of O and OK. We know that mO is invertible in OK.
Suppose it is also invertible in O. Then, {x ∈ K | xmO ⊆ mO} = O. But, we
then also have {x ∈ K | xmO ⊆ mO} = OK, which is a contradiction.

1.2.3 Submodules of Free Modules over Left Hereditary Rings

We now give a full proof of a result that will be crucial to our investigation of
full modules over maximal orders. The following argument may be found in
the Section 1.3 of Husert’s thesis, or alternatively as Theorem 2.44 in Irving
Reiner’s “Maximal Orders.”

We say that a ring R is left hereditary if every left ideal is a projective R-module.

Theorem 1 If R is a left hereditary ring, then every submodule of a free left
R-module M of finite rank is isomorphic to an external direct sum of ideals of
R, and is therefore projective.

Proof. We proceed by induction on the rank k of the free module. The result
is trivial for k = 1. Up to isomorphism, we know that M looks like Rk for some
integer k. Define π1 : Rk → R as projection onto the first component of Rk.
Let U be a submodule of Rk and observe that π1(U) is a left ideal of R. We
obtain the following short exact sequence:

0 ker(π1|U ) U π1(U) 0

Since R is left hereditary, π1(U) is projective, hence our short exact sequence
splits: U ∼= ker(π1|U ) ⊕ π1(U). But, ker(π1|U ) clearly embeds in Rk−1, so by
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induction we may write it as the direct sum of ideals. It follows that U is the
direct sum of ideals and the proof is complete.

■

Of course, Dedekind domains are left (and right) hereditary, so the previous
theorem applies to submodules of free modules over a Dedekind domain. It
is natural to consider which modules may be embedded as submodules of free
modules. If R is a Dedekind domain and M is an R-lattice, then M may be
viewed as a lattice in KM . We may then pick some R-free lattice N in KM and
observe that we may choose α ∈ R× such that αM ⊆ N . Thus, any R-lattice
may be viewed up to isomorphism as living in a free R-module, and therefore
is the direct sum of ideals (and projective). Since projective modules are direct
summands of free modules, they are always torsion free. Therefore, a finitely
generated module over a Dedekind domain is torsion-free if and only if it is
projective. This is a generalization of the situation of PIDs, where the classes
of finitely generated torsion-free, projective, and free modules all coincide.

When R is a Dedekind domain, we can produce a very simple decomposition of
R-lattices. This is because we can “force” ideals of R to be coprime.

Lemma 1 Let A and B be nonzero ideals of R. Then, there exists γ ∈ K×

such that A+ γB = R.

Proof. Because R is Dedekind, we may write both ideals as the product of
prime ideals: A = pa1

1 · · · p
ak

ka
and B = qb11 · · · q

bk
kb
. By weak approximation,

choose some γ ∈ K× such that νqi
(γ) = −api

for all i. Since γA = (γ)A, we
find that γA has nonnegative valuation at each prime ideal of R, and it follows
that γA ⊆ R. Furthermore, each prime ideal appearing the the decomposition
of B necessarily has valuation zero with respect to γA, so γA is not contained
in any prime containing B, and γA+B = R.

■

Theorem 2 If R is a Dedekind domain, then any R-lattice M of rank n is
isomorphic to A⊕Rn−1 for some ideal A in R.

Proof. We will prove that if {Ai}ki=1 is a collection of ideals of R, then⊕k
i=1Ai

∼= (A1 · · ·Ak) ⊕ Rk−1. By Theorem 1, M ∼=
⊕n

i=1Ai for some ide-
als {Ai} in R, so this will complete the proof. First, suppose that k = 2. By
the above lemma, we may assume (up to isomorphism) that A1 is coprime to
A2. Thus, A1A2 = A1 ∩A2. We obtain the following short exact sequence:

0 A1A2 A1 ⊕A2 R 0

by sending a 7→ (a,−a) and (a1, a2) 7→ a1 + a2.

As R is projective, the sequence splits, and the result follows for k = 2. For the
general case, we may view a direct sum of n ideals as the direct sum of the first
n− 1 ideals with the last ideal and then apply the above case.
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1.3 Ring Theory

In this section, we will recall some of the basic properties of rings, with an
emphasis on the results relevant to the proof of the Jordan-Zassenhaus theorem
and the structure of maximal orders in matrix algebras. The proofs in this
section are short, so we will provide them in full.

1.3.1 Semisimple and Artinian Modules

We begin with the theory of semisimple rings. All modules in this section are
left modules (this was implicitly assumed in previous sections, but it is best to
be explicit in this section since we will encounter noncommutative rings). A
nonzero R-module M is simple if it has no nontrivial submodules. If R is an
algebra over a field, we often refer to R-modules as representations and simple
R-modules as irreducible representations. We say that an R-module M is com-
pletely reducible (or semisimple) if every submodule N has a complementary
submodule N ′ such that M = N ⊕ N ′. A ring is semisimple if its left regular
module is semisimple. A ring is simple if it has no nontrivial two-sided ideals.
Standard arguments such as those in the first chapter of Isaacs’ “Character The-
ory of Finite Groups,” establish that M is semisimple iff it is the sum of some
of its simple submodules iff it is the direct sum of some of its simple submodules.

From this characterization, it is immediate that submodules and quotients of
semisimple modules are semisimple. Since every module is a quotient of a free
module, it follows that a ring R is semisimple if and only if every R-module is
semisimple.

Next, recall that a module is called Artinian if every descending chain of sub-
modules stabilizes. A ring is (left/right) Artinian if its (left/right) regular mod-
ule is Artinian. It is not hard to show that a module is Artinian if and only
if every nonempty collection of submodules contains a minimal element. An
important class of Artinian rings are the finite dimensional algebras over fields.

We would like to relate Artinian rings to semisimple rings. The link between
the two is the Jacobson radical. For any R-module M , we define its Jacobson
radical Rad(M) to be the intersection of its maximal submodules. By conven-
tion, the intersection of the empty family of submodules ofM is simplyM . The
Jacobson radical of a ring R is the intersection of the maximal left ideals of R.

Proposition 1 Let R be a ring. Then, Rad(R) is precisely the elements of R
that annihilate all simple R-modules.

Proof. Suppose that m is a maximal ideal of R. Then, R/m is a simple
R-module. If x ∈ Rad(R), then x(R/m) = 0, implying x ∈ m. Conversely,
suppose x belongs to every maximal ideal of R. Let W be a simple R-module
with w ∈ W , w ̸= 0. Then, Rw = W and we claim than Ann(w) is a maximal

9



left ideal of R. Suppose that Ann(w) ⊊ J ⊊ R for some ideal J in R. Then,
there exists some j ∈ J such that jw ̸= 0. Thus, Rjw = W and w = rjw
for some r ∈ R. But this implies that 1 − rj ∈ Ann(w) ⊆ J , hence 1 ∈ J .
Therefore, Ann(w) is a maximal left ideal and x ∈ Ann(w), so x annihilates W
as desired.

■

Corollary 1 For any ring R, the ring R/Rad(R) is semisimple.

Proof. Let M be a simple R-module. Then, R → End(M) descends to a
map R/Rad(R) → End(M), so M is also a simple R/Rad(R)-module. If
[x] ∈ R/Rad(R), then [x] annihilates M for any simple R-module M , and it
follows that x ∈ Rad(R) = 0.

■

This characterization also makes clear that Rad(R) is a two-sided ideal.

Proposition 2 Artinian rings are semilocal.

Proof. Let R be a (left/right) Artinian ring. Let S be the set of all finite
intersections of maximal (left/right) ideals of R, which has a minimal element

I =
⋂k

i=1Mi. Let m be a maximal (left/right) ideal of R. Then, I ∩m = I by
minimality. Thus, M1 · · ·Mk ⊆ I ⊆ m, so Mj = m for some j, and it follows
that M1, . . . ,Mk are the only maximal (left/right) ideals.

■

Proposition 3 LetM be an Artinian R-module. Then,M/Rad(M) is semisim-
ple. Further, M is semisimple if and only if Rad(M) = 0.

Proof. By definition, Rad(M) =
⋂

m∈I m where I is the set of all maximal
submodules ofM . SinceM is Artinian, the set of finite intersections of elements
of I has a minimal element J =

⋂n
i=1mi, which necessarily coincides with

Rad(M). We obtain the following exact sequence:

0 Rad(M) M
⊕n

i=1M/mi

EachM/mi is simple, soM/Rad(M) embeds in a semisimple module, and must
itself be semisimple.

Obviously, if Rad(M) = 0 then M is semisimple. Conversely, if M =
⊕
Vi for

some simple modules {Vi}, observe that ker(πi) is maximal for each i. Therefore,
Rad(M) ⊆

⋂
ker(πi) = 0.

■
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1.3.2 Matrix Rings

We will now describe the structure of arbitrary semisimple rings.

Theorem 3 (Artin-Wedderburn) Let R be a semisimple ring. Then, R is iso-
morphic to the direct sum of finitely many matrix rings over division rings.

Proof. Consider the left regular representation of R. We may write R ∼=⊕k
i=1 V

ni
i for simple pairwise nonisomorphic R-modules {Vi}. It follows that

EndR(R) ∼= EndR(
⊕k

i=1 V
ni
i ).

By Schur’s lemma, EndR(
⊕k

i=1 V
ni
i ) ∼=

⊕k
i=1 EndR(V

ni
i ) ∼=

⊕k
i=1 Matni

(EndR(Vi)).

But, EndR(R) ∼= Rop, soR ∼= (
⊕k

i=1 Matni(EndR(Vi)))
op ∼=

⊕k
i=1 Matni(EndR(Vi))

since the transpose map gives an isomorphism between matrix rings and their
opposite ring.

Finally, by Schur’s lemma again, EndR(Vi) is a division ring Di. So, we may

write R ∼=
⊕k

i=1 Matni
(Di) as desired.

■

The following proposition leads to a converse to the Artin-Wedderburn theorem.
We follow the proof in Grillet’s “Abstract Algebra.”

Proposition 4 Let R be a ring. Then, for each two-sided ideal I of R, Matn(I)
is a two-sided ideal of Matn(R). All two sided ideals of Matn(R) are of this
form.

Proof. Clearly, Matn(I) is a two-sided ideal of Matn(R) for each ideal I of R.
Now, suppose that J is an ideal of Matn(R). Define I as the set of all (1, 1)-
entries of elements of J , which is an ideal of R. We will show that J = Matn(I).
With Eij as the matrix having entry (i, j) as 1 and zeros elsewhere, observe
that EijAEkl = AjkEil for any A ∈ J . Taking i = l = 1 and varying j and k,
it follows that J ⊆Matn(I).

Next, if B ∈ Matn(I), for each i and j, we have Bij = Cij
11 for some Cij ∈ J .

Then, Cij
11Eij = Ei1C

ijE1j ∈ J . As B =
∑

i,j C
ij
11, we see B ∈ J , completing

the proof.

■

An immediate consequence of the proposition is that matrix rings over simple
rings are simple. Therefore, for any division ring D, the matrix ring Matn(D) is
simple, and its Jacobson radical must vanish. Furthermore, ideals of Matn(D)
are in bijection with submodules of Dn (from a submodule of Dn we construct
a matrix whose rows are elements of Dn). Since finitely generated modules over

11



Artinian rings are Artinian, Dn and therefore Matn(D) is Artinian. By Propo-
sition 3, it follows that Matn(D) is semisimple. As the product of semisimple
rings is semisimple, we obtain the fundamental result that a ring is semisim-
ple if and only if it is isomorphic to the product of finitely many matrix rings
over division rings. By applying Artin-Wedderburn, it is also clear that if R is
semisimple, so too is Matn(R).

The following result will be used in the proof of the Jordan-Zassenhaus theorem.
If D is a division ring, then Dn is the unique irreducible representation of
Matn(D) up to isomorphism. We first need to show that Dn is actually an
irreducible representation. Any matrix in Matn(D) may be regarded as a map
Dn → Dn. Suppose that V ⊆ Dn is a nontrivial subrepresentation. Choose
some w ∈ Dn \ V . Choose a basis of V and extend it to a basis of Dn (this
is possible because all modules over division rings are free). Send one of the
of the basis vectors of V to w while sending the others to arbitrary elements.
Define a map ϕ : Dn → Dn by extending by linearity. Therefore, we obtain a
matrix for which V is not an invariant submodule. Conversely, any irreducible
representation F is isomorphic to some minimal left ideal I of Matn(D). We
may assume without loss of generality that there exists some A ∈ I such that
the first column of A is nonzero. Then, sending any element of I to its first
column defines a nonzero map of representations I → Dn, which must be an
isomorphism by Schur’s lemma.

1.3.3 Local Properties

Proposition 5 Let R be an integral domain with field of fractions K. Let
M be a torsion-free R-module (so M embeds in the K-space KM). Then,
M =

⋂
mMm, where intersection is viewed within KM , and ranges over all

maximal ideals of R.

Proof. Of course, M ⊆
⋂

mMm. Next, suppose x ∈
⋂

mMm. Define the ideal
I = {r ∈ R | rx ∈ M}. Then, for each maximal ideal m, x = mm/sm for some
mm ∈ M and sm ∈ A \ m. It follows that smx ∈ M , implying that sm ∈ I.
It follows that I ⊊ m for each maximal m. However, by Krull’s theorem, this
implies I = R, and in particular 1 ∈ I, so x ∈M as desired.

■

We now want to prove that if R is a local ring and O is an R-order in an algebra
A, then O is semilocal. In particular, a Dedekind order over a local ring is a
PID. This rather obscure result will prove useful in the study of maximal matrix
orders.

Lemma 2 Let R ⊆ F be an integral extension of an integral domain R by a
field F . Then, R is also a field.

Proof. By integrality, for any x ∈ R, we have p(x−1) = 0 for some monic
p(x) ∈ R[x]. Thus, 1/xn + an−1/x

n−1 + · · · + a0 = 0. Scaling by xn−1 and
subtracting terms, we see that x−1 ∈ R as desired.

12



■

Lemma 3 Let R be a local ring with residue field R/m = K. Let A be a finitely
generated R-algebra. Then, every maximal ideal of A contains mA.

Proof. Let M be a maximal ideal of A. We may view R as a subring of A
and consider R ∩M . Since M is maximal, it is also prime, and it follows that
R∩M is a prime ideal of R. Hence, R/(R∩M) is an integral domain. Further,
R/(R ∩M) embeds as a subring of the field A/M . By the previous lemma,
noting that finite ring extensions are integral, it follows that R/(R∩M) is also
a field, so R ∩M is maximal and coincides with m. So, m ⊆ M and therefore
mA ⊆M .

■

The following proof closely follows Lemma 2.4 of Morandi’s “Maximal Orders
Over Valuation Rings.”

Proposition 6 Let R be a local ring and O an R-order in an algebra A. Then,
O is semilocal.

Proof. Suppose that M1, . . . ,Mn are maximal ideals of O. Then, by defi-
nition of the radical, Rad(O) ⊆

⋂n
i=1Mi. We obtain an obvious surjection

O/Rad(O) ↠ O/
⋂n

i=1Mi. Next, because R is local Rad(R) = m for the
unique maximal ideal m ⊆ R. Therefore, R/Rad(R) is a field.

Define RadR(O) = Rad(R)O. In the standard way, O/RadR(O) becomes
an R/Rad(R)-module (vector space). We would like to view O/Rad(O) and
O/

⋂n
i=1Mi as R/Rad(R)-spaces as well. However, we need to be careful and

check that the action is actually well-defined.

It suffices to check that RadR(O) ⊆ Rad(O). This follows immediately from
Lemma 3, taking O as our finitely generated algebra over local ring R. There-
fore, O/Rad(O) and O/

⋂n
i=1Mi become R/Rad(R)-spaces.

By the Chinese Remainder theorem, O/
⋂n

i=1Mi
∼=

⊕n
i=1O/Mi. Next, since⋂n

i=1Mi ⊆ Mj for any j, each O/Mj is an R/Rad(R)-space with dimension
greater than or equal to 1.

Observe that n ≤ [
⊕n

i=1O/Mi : R/Rad(R)] ≤ [O/Rad(O) : R/Rad(R)].

However, [O/RadR(O) : R/Rad(R)] < ∞, because O is a finitely generated
R-module, and this serves as an upper bound on the rightmost term on the
previous line. Therefore, we cannot have infinitely many maximal ideals in O.

■

13



1.4 Matrices and Modules over a PID

In this section, we will review the theory of finitely generated modules over a
PID. We will use the existence of a Smith Normal Form (SNF) of a matrix over
a PID to give a proof of the existence of an invariant factor decomposition of
a module, and give a slick proof of the uniqueness of this form. We mention
some other facts about matrices that are generally useful. All of this material
is classical and can be found in any good algebra textbook, so we will be brief
in the proofs. However, we still include this section to have a self-contained
reference.

1.4.1 Existence Results

We start by examining the submodules of finite rank free modules over a PID.
We saw earlier that submodules of finite rank free modules over a left hereditary
ring (such as a Dedekind domain) are projective. The following theorem shows
how we can strengthen this result when we have a PID. We follow the proof
given on Matt Baker’s blog (included for completeness).

Theorem 4 Let R be a PID and let M be a free module of rank m. Then, any
submodule of M is free of rank less than or equal to m.

Proof. We proceed by induction on the rank ofM . Clearly, up to isomorphism,
M ∼= Rm, and this isomorphism sends free modules to free modules, so we will
assume without loss of generality that M = Rm.

When m = 1, the result holds trivially because R is a PID. Suppose that the
theorem holds for free modules of rank less than m. Define π : Rm → R as
projection onto the last coordinate of Rm. Observe that kerπ is free of rank
m− 1. Given any submodule N ⊆M , define N ′ = N ∩ kerπ. By induction, N ′

is free of rank less than or equal to m − 1. Further, π(N) is an ideal of R, so
π(N) = (x). Choose y ∈ π−1(x) ∩ N and define N ′′ = (y). If π(N) = 0, then
N ⊆ kerπ, and N = N ′, in which case, we are done.

If x ̸= 0, then N = N ′⊕N ′′. Indeed, if w ∈ N ′∩N ′′, then π(w) = 0 and w = ry
for some r ∈ R. So, rπ(y) = rx = 0, forcing r = 0 and w = 0. Next, let w ∈ N
and write π(w) = rx for some r ∈ R. Then, π(w− ry) = 0, hence w− ry ∈ N ′,
and w ∈ N ′ +N ′′ as desired.

■

Using the SNF of a matrix over a PID (see Matt Baker’s blog post linked above
if SNF is unfamiliar), we can extract “aligned bases” for M and N .

Theorem 5 Let R be a PID and let M be a free module of rank m. Let N
be a rank n submodule of M . Then, there exists a basis x1, . . . , xm of M such
that there exists a1, . . . , an ∈ R for which a1x1, . . . , anxn is a basis for N and
a1 | a2 | . . . | an.
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Proof. Recall that if y1, . . . yl is a basis of an R module, and Y ∈ Matn(R),
then [y1, . . . yl]Y is a basis if and only if Y ∈ GLn(R).

Now, let w1, . . . , wn be a basis for N and let z1, . . . , zm be a basis for M . We
have some matrix A ∈ Matm×n(R) such that [w1, . . . , wn] = [z1, . . . zm]A. We
can put A in Smith Form: A = XDY , where D ∈ Matm×n(R) is in SNF,
and X and Y are invertible of appropriate sizes. Then, [w1, . . . , wn]Y

−1 =
[z1, . . . zm]XD, which tells us that [z1, . . . zm]XD is a basis of N . It is easy to see
that [z1, . . . zm]X is our desired basis x1, . . . , xm of M and that [z1, . . . zm]XD
is our “aligned” basis of N , where the a1, . . . , an arise as the diagonal terms of
D. These coefficients satisfy the divisibility condition because of the divisibility
condition in SNF.

■

It is now easy to show the invariant factor decomposition of any finitely gener-
ated module M over a PID R.

Theorem 6 Let R be a PID and let M be a finitely generated R-module. Then,
M ∼= Rr ⊕R/(a1)⊕ · · · ⊕R/(an) for some integer r ≥ 0 and nonzero, non-unit
elements a1, . . . an ∈ R satisfying the divisibility condition a1 | a2 | . . . | an.

Proof. We have already done all of the hard work for this theorem. Since M is
finitely generated, choose a minimal set of generators and define φ : Rn ↠ M
by sending the standard basis of Rn to the chosen generators. Note that kerφ
is a submodule of the free module Rn, so by the previous theorem we can find
an aligned bases. Then, write Rn and kerφ in terms of the aligned bases to see
that Rr ⊕R/(a1)⊕ · · · ⊕R/(an) ∼= Rn/ kerφ ∼=M .

■

It follows immediately that a finitely generated module over a PID is free if and
only if it is torsion-free, and may be be written as the direct sum of a free and
torsion-free module.

1.4.2 Uniqueness Results

Crucially, this “invaraint factor form” is unique up to units. This follows from
a more general theorem, which we learned from this answer by the user Anony-
mous.

Theorem 7 Let R be a commutative ring and I1 ⊆ I2 ⊆ · · · ⊆ In ⊊ R be
an increasing sequence of ideals. Let M be an R-module for which there exists
an isomorphism M ∼= R/I1 × · · · × R/In. Then, (1) the minimal number of
generators of M is n, and (2), for 1 ≤ k ≤ n, Ik is the set of all x ∈ R such
that xM is generated by fewer than k elements.
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Proof. Clearly, we have a canonical surjection Rn ↠ R/I1 × · · · ×R/In, so M
is generated by n elements. Suppose there exists a generating set of cardinality
r < n. Let m be a maximal ideal containing In, which exists by Krull’s theorem
(here, it is essential that In is strictly smaller than R). Because m contains In,
we obtain a well-defined R-linear map ψ : R/I1 × · · · × R/In ↠ (R/m)n by
sending ([r1]I1 , . . . , [rn]In) 7→ ([r1]m, . . . , [rn]m). Composing ψ with the isomor-
phism ϵ : M → R/I1 × · · · × R/In, we obtain an R-linear surjection onto an
n-dimensional vector space. This implies (R/m)n is spanned by r vectors over
R/m, which is a contradiction.

We now prove the second statement. Define mx : R → R as left-multiplication
by x ∈ R. Define Ixk = m−1

x (Ik) for 1 ≤ k ≤ n.

Now, define ϵ′ : xM → R/Ix1×· · ·×R/Ixn by sending xα 7→ ([ϵ1(α)]Ix
1
, . . . , [ϵn(α)]Ix

n
),

where ϵi denotes the ith component of ϵ. This map is well-defined because of the
definition of Ixk . Because the inverse image of an ideal under a ring map is an
ideal, xM ∼= R/Ix1 ×· · ·×R/Ixn meets the hypotheses of part (1) of the theorem
(once we remove any trivial quotients). Indeed, it is possible that x ∈ Ij for
some j and then Ixk = R for all k > j. Applying (1), we see that xM can be
generated by fewer than k elements if and only if R/Ixk = 0 if and only if x ∈ Ik.

■

Observe that this theorem implies the uniqueness of the invariant factor form of
a finitely generated module over a PID. Indeed, if Rr⊕R/(a1)⊕· · ·⊕R/(an) ∼=
Rk ⊕ R/(b1) ⊕ · · · ⊕ R/(bn), then Rr ∼= Rk, which implies r = k by the well-
definedness of the rank of a free module over a commutative ring. We can
quotient out the torsion-free parts, and the uniqueness theorem reduces to the
case of finitely generated torsion modules, which is addressed by the present
theorem.

Furthermore, if V is a finite-dimensional vector space over a field k and T ∈
End(V ), then we obtain a k[x]-module structure on V by defining p(x)v =
p(T )v. This turns V into a finitely generated torsion module over the PID k[x].
Then, choosing a suitable basis on the invariant factor decomposition of V , rep-
resenting the k-linear multiplication by x map with respect to this basis, and
using the k[x]-module isomorphism V ∼= k[x]/(p1(x))⊕· · ·⊕k[x]/(pn(x)) guaran-
teed by the invaraint factor form, we obtain the Rational Canonical Form (RCF)
of an endomorphism. The uniqueness of the invariant factor form guarantees
RCF is unique up to units. If k is algebraically closed, a slight modification of
the above idea yields the Jordan Canonical Form (JCF). For details on these
arguments, see Dummit and Foote’s “Abstract Algebra” sections 12.2 and 12.3.

On the topic of uniqueness theorem, it seems a good time to draw attention to
the uniqueness of SNF and what it can do for us. Matt Baker provides a nice
proof of this uniqueness result as well. The uniquely determined diagonal entries
of the SNF a matrix A are called its SNF invariant factors (the invariant factors
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of a finitely generated module over a PID arise from the invariant factors of a
specific presentation matrix, so this choice of name is not coincidental). The ith
SNF invariant factor di equals di(A)/di−1(A), where dj(A) denotes the GCD of
all j×j minors of A. In particular, the determinant of a square matrix A equals
the determinant of its SNF (so it is the product of the SNF invariant factors
of A). This fact will be useful when discussing discriminants in the following
section on field theory.

1.4.3 Matrix Similarity Over a Field

Since any matrix over a field is similar to a unique matrix in rational canoni-
cal form, the collection of distinct possible rational canonical forms is a set of
representatives of the similarity classes. Before examining the similarity of two
integral matrices over the integers, it is prudent to test whether they are similar
over the rationals. If they are not similar over the rationals, then they cannot be
similar over the integers. Therefore, when presented with two integer matrices
and asked to test for similarity, our first step should be to test similarity over
the rationals.

It turns out that we can use the SNF to test for similarity of matrices over a
field.

Proposition 7 Let k be a field. Then, A,B ∈ Matn(k) are similar over k if
and only if xI −A, xI −B ∈ Matn(k[x]) have the same SNF over k[x].

Proof. As discussed previously, any linear endomorphism T ∈ End(V ) induces
a k[x]-module structure on V . Therefore, a matrix X ∈ Matn(k) furnishes a
k[x]-module MX (this is just kn equipped with the action induced by X). We
define the k-invariant factors of a matrix X to be the invariant factors of MX .
We do not use the SNF invariant factors of X because this is always a binary
matrix, and it does not give enough information in general. Using the structure
theorem for finitely generated modules over a PID, we see that A is similar to
B if and only if they have the same k-invariant factors. We will show that the
k-invariant factors of a matrix X are precisely the invariant factors of the SNF
of xI −X, and this will prove the proposition.

We obtain the following exact sequence of k[x]-modules:

k[x]n k[x]n MX 0

where the first map is given by multiplication on the left by the matrix xI −X
and the second map π sends the standard basis of k[x]n to the standard basis of
kn (and we extend k[x]-linearly). The exactness of this sequence is non-obvious.
To see that ker(π) ⊆ im(xI − A), note that any polynomial vector p(x) can be
divided with remainder as p(x) = (xI − A)q(x) + p(A) for some q(x) ∈ k[x]n.
This follows from observing that the action of x and A is the same in the quo-
tient k[x]n/ im(xI −A), i.e., [xp(x)] = [Ap(x)], which extends to w(x) acting as
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w(A) for any polynomial w(x) ∈ k[x].

By putting xI − X in SNF, noting that equivalent matrices have isomorphic
cokernels, we see that MX ∼=

⊕
k[x]/(ai) where {ai}ni=1 are the SNF invariant

factors of xI − X. By the uniqueness of the structure theorem, these SNF
invariant factors are the invariant factors of MX , and thus they are the k-
invariant factors of X as required.

■

This is very nice because k[x] is a Euclidean domain, so we can algorithmically
compute Smith forms of matrices over it. MIT OCW has a nice explanation of
this. Although this algorithm is not particularly efficient, it shows that we can
have a way to practically test for similarity over fields without too much effort.
Unfortunately, we cannot say the same for the integers.

Before turning to field theory, let us mention one particularly easy case for
similarity over a field. In general, there exist non-similar matrices with the same
characteristic polynomial. However, each irreducible characteristic polynomial
only gives rise to a single similarity class of matrices over a field.

Proposition 8 Let k be a field and f(x) ∈ k[x]. Then, all matrices in Matn(k)
with characteristic polynomial f(x) are similar if and only if the unique factor-
ization of f(x) into irreducibles over k is square-free.

Proof. If the factorization of f(x) is square-free, then every matrix with char-
acteristic polynomial f(x) also has minimal polynomial f(x). It follows that the
rational canonical form of all such matrices is exactly the companion matrix of
f(x), hence they are all similar.

For the other direction, observe that if f(x) is not square-free, we can have ma-
trices A,B ∈ Matn(k) with characteristic polynomial f(x) but distinct minimal
polynomials. It follows that A is not similar to B, which concludes the proof.

■

Frequently, we will seek to test whether two integral matrices with the same
irreducible characteristic polynomial are similar over the integers (this is the
simplest integral similarity case we can consider), so this result tells us we can
skip the step of testing similarity over the rationals.

1.5 Field Theory

In this section, we address the theory of norms, traces, and discriminants of field
extensions. These ideas will be essential tools for understanding the principal
ideal testing algorithm. All of this theory and more can be found in Milne’s
“Algebraic Number Theory,” but we collect the results here for completeness
and to expand on some proofs.
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1.5.1 Norm and Trace

Let A ⊆ B be an extension of commutative rings. Let mx denote left multipli-
cation by x ∈ B. We will define two maps B → A by applying linear algebraic
operations to mx. We define the trace map by TrB/A(x) = Tr(mx) and the
norm map by NB/A(x) = det(mx).

We will primarily consider the trace and norm of field extensions (such as K/Q,
for a number field K). Our first goal is to understand an alternative character-
ization of norm and trace in terms of the roots of minimal and characteristic
polynomials. We follow Keith Conrad’s notes. Recall that if A is an finite-
dimensional associative, unital algebra over a field k, then we can define the
characteristic polynomial of any element x ∈ k as the characteristic polynomial
of the map mx. So as not to confuse the multiplication map mα with the mini-
mal polynomial, given a finite field extension L/K, we will write πα,L/K(x) for
the minimal polynomial of α ∈ L over K. Similarly, we write χα,L/K(x) for the
characteristic polynomial of α ∈ L over K.

Proposition 9 Let L/K be a degree n extension of fields. Then, we have
χα,L/K(x) = πα,L/K(x)n/d, where d = [K(α) : K].

Proof. The matrix representation of the multiplication by α map on K(α) ∼=
K/(πα(x)) is the companion matrix of the minimal polynomial of α, so χα,K(α)/K(x)
is a monic polynomial of degree d. But, a simple application of Cayley-Hamilton
tells us that any element of a field satisfies its own characteristic polynomial, so
πα(x) | χα,K(α)/K(x), and since they are both monic of degree d they must be
equal.

Let m = [L : K(α)] and let {β1, . . . , βm} be a K(α)-basis for L. It follows that
{αβ1, . . . , αd−1β1, . . . , αβ

m, . . . , αd−1βm} is a K-basis for L. Examining this
basis, we see that the matrix representation of multiplication by α on L is the
direct sum of m copies of the companion matrix of πα(x).

Therefore, χα,L/K(x) = (χα,K(α)/K(x))m = (πα(x))
m.

As degree is multiplicative, [L : K(α)][K(α) : K] = [L : K], and we seem = n/d
as desired.

■

It follows that NL/K(α) = (−1)na0, where a0 is the constant term of χα,L/K(x).

By the proposition, this is precisely (−1)nb
n
d
0 , where b0 is the constant term of

πα,L/K(x). If the minimal polynomial factors as (x− α1) · · · (x− αd), then the

norm of α is precisely (α1 · · ·αd)
n
d . Similarly, by examining the second coef-

ficient of the characteristic polynomial, we see that TrL/K(α) = n
d (α1+· · ·+αd).
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We now want to relate the the norm of x ∈ K to the embeddings of K ↪→ C.
It is this form of the norm that will be primarily used going forward. First,
recall that there are exactly [K : Q] embeddings of K into C. Indeed, by the
primitive element theorem, we can write K = Q(α) for some α ∈ K. Then,
πα,K/Q(x) has exactly n roots in C, say {αi}ni=1 (irreducible polynomials are
separable in characteristic 0), and sending α 7→ αi defines n embeddings of K
(we use the universal property of polynomial rings and quotients to guarantee
this is a well-defined ring morphism). It is easy to check that these are the only
possible embeddings.

Proposition 10 Let K be a degree n number field with embeddings σi : K ↪→ C.
Then, NK/Q(x) =

∏n
i=1 σi(x) for all x ∈ K.

Proof. By the primitive element theorem, we may write K = Q(α). By the
remarks following Proposition 9, NK/Q(α) =

∏n
i=1 σi(α).

To obtain the result for any y ∈ K, observe that K/Q(y) is a finite extension,
and therefore primitive, i.e., there exists β ∈ K such that K = Q(y)(β). By
the same argument as before, we know that Q(y) has d = deg(πy(x)) embed-
dings τ1, . . . , τd. For each such embedding τi, by sending β to the roots of its
minimal polynomial over Q(y), we obtain m embeddings K ↪→ C extending τi.
Because m = n/d, we see that these extended embeddings make up all of the σi.

Now, we have NQ(y)/Q(y) =
∏d

i=1 τi(y), so NK/Q(y) = (
∏d

i=1 τi(y))
n/d.

Because each τi gives rise to m of the σi, we see that NK/Q(y) =
∏n

i=1 σi(y) as
desired.

■

The above argument holds in the more general setting of a finite separable field
extension.

An essentially identical argument establishes that TrK/Q(x) =
∑n

i=1 σi(x).

We can also use the field norm to find the units of OK. Because the minimal
polynomial of any algebraic integer is integral by Gauss’ lemma, we see that the
characteristic polynomial of any x ∈ OK is integral, so the norm of x is an integer
(arising from the constant term of the characteristic polynomial). If x is a unit,
then by the multiplicativity of the norm (which comes from the multiplicativity
of the determinant), we see NK/Q(x) = ±1. Further, if NK/Q(x) = ±1, then the
constant term of the minimal polynomial of x is also ±1.

Let πx(x) = xn + an−1x
n−1 + · · · + a0 be the minimal polynomial of x. We

can then write x(xn−1 + an−1x
n−2 + · · · + a1) = ±1, and we find x is a unit.

Therefore, the units of OK are precisely the elements with norm ±1.
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1.5.2 Numerical Norm

There is also the notion of the numerical norm of an ideal of an order O ⊆ K.
Let I ⊆ O be an ideal. We define N(I) = [O : I], and we call this the numerical
norm of I in O.

We should first show that N(I) is finite. This is immediate from the aligned
basis theorem, but it also follows from I and O being Z lattices in K. Indeed,
there exists m ∈ Z such that mO ⊆ I ⊆ O. Therefore, N(I) ≤ |O/mO| = mn,
where n is the degree of K. This also shows that there are finitely many ideals
in O with a given norm. Suppose N(I) = m. Then, by Lagrange’s theorem,
mO ⊆ I ⊆ O. But, we know that ideals of the finite group O/mO are in bijec-
tion with ideal containing mO, so there are only finitely many possible choices
for I.

There is an important relationship between the numerical norm and field norm.

Proposition 11 Let x ∈ O. Then, NK/Q(x) = N(xO).

Proof. This is a special case of Proposition 12 below, taking M = O and
N = xO. Note that if y1, . . . , yn is a Z-basis of O, then xy1, . . . , xyn is a Z-basis
of xO, and the change of basis matrix representing the xO basis in terms of the
O basis is precisely the matrix representation for multiplication by x on O with
respect to y1, . . . , yn.

■

Importantly, this tells us that the numerical norm of any ideal is less than or
equal to the norm of any of its elements. This fact will play a crucial role in the
algorithm we use to compute minima of ideals.

One can also show that the numerical norm is multiplicative.

1.5.3 Discriminants

Milne’s section on discriminants is quite clear, so we refer the reader to his notes
for the basic definitions.

However, we would like to call attention to two specific points. Milne’s Remark
2.25 will be especially relevant for us when discussing Minkowski theory, so we
state the case we need as a proposition.

Proposition 12 Let M be a rank n free Z-module with basis e1, . . . , en and
let N ⊆ M be a rank n submodule of M with basis f1, . . . , fn. Write fi =∑n

j=1 aijej and define A = (aij)n×n. Then, [M : N ] = |det(A)|.

Proof. Write [f1, . . . , fn] = [e1, . . . , en]A. As in Theorem 6, use SNF to write
A = XDY , and observe [f1, . . . , fn]Y

−1 = [e1, . . . , en]XD. We thereby ob-
tain aligned bases for M and N with the scaling terms as the diagonal entries

21

https://math.stackexchange.com/questions/3406829/norm-of-ideals-is-multiplicative
https://www.jmilne.org/math/CourseNotes/ANT.pdf


d1, . . . , dn of D. Clearly, [M : N ] = |d1 · · · dn| = |det(D)|, and by the unique-
ness of SNF, this is precisely |det(A)|.

■

This proposition tells us that the index of a full rank submodule is the product
of the SNF invariant factors of the change of basis matrix.

Recall that the discriminant of an extension of fields L/K is defined up to
squares of units. More precisely, if a1, . . . , an and b1, . . . , bn are bases for L
over K, then D(a1, . . . , an) = det(C2)D(b1, . . . , bn), where C is the change of
basis matrix associated with our bases. It follows that the discriminant of a free
Z-module is a well-defined integer, as 1 is the only square of a unit in Z.

Also, recall that fractional ideals of OK are the same as full OK-modules in
K, so they are free Z-modules of full rank. Therefore, all ideals of OK have a
well-defined discriminant over Z.

Given an ideal I ⊆ OK, we can choose integral bases for I and OK, which are
also Q-bases for K. By Proposition 12, disc(I/Z) = [OK : I]2 disc(OK /Z). Us-
ing the numerical norm, disc(I/Z) = N(I)2 disc(OK /Z).

Another result that will be important for us is the non-degeneracy of the trace
pairing on a number field.

Proposition 13 Let K be a degree n number field with embeddings σi : K ↪→ C.
Then, D(β1, . . . , βn) = det((σi(βj)n×n)

2 ̸= 0, for every basis β1, . . . , βn of K
over Q.

■

The above proposition is a special case of Proposition 2.26 in Milne.

Proposition 13 also gives us an alternative definition of the discriminant of a
number field. Let us quickly clear up some terminology. Generally, the dis-
criminant is defined with respect to a specific basis. When considering free
Z-modules, the choice of basis becomes irrelevant.

When we speak of “the discriminant of number field K,” we mean precisely
disc(OK/Z). For ease of notation, throughout the rest of this paper, we will
denote dK = disc(OK/Z). If β1, . . . βn is an integral basis of OK, we will call
(σi(βj)n×n) an embedding matrix of OK.

Therefore, Proposition 13 tells us that dK is nonzero and equals the square of
the determinant of any embedding matrix of OK.

In other words, |dK |
1
2 = |det((σi(βj)n×n))|.
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2 Notes on Husert’s Dissertation

In this section, we provide supplementary notes to the first three sections of
Husert’s dissertation. These sections demonstrate how the integral similarity
problem may be completely understood in nice cases using algebraic number
theory. It is best to read this section alongside Husert’s work.

2.1 Full Modules Over Orders (Section 1.1)

This section introduces the essential definitions and terminology to concisely
state the generalized Latimer-MacDuffee theorem. Almost all Husert’s com-
ments here are restatements of the material presented in the Preliminary Sec-
tions 1.1 and 1.2. However, parts of Proposition (1.2) are non-obvious, so we
give a slightly expanded argument below.

Proposition 1.2* The multiplier ring is a Z-order of K =
⊕s

i=1Ki.

Proof. Recall that the multiplier ring of a free Z-module U of rank dimQKn is
defined to be O = {x ∈ K | xU ⊆ U}. It is clear that O is a subring of K, so it
remains to show that O has full rank in K.

Define π : Kn ↠ K by picking a copy of K inside of Kn and projecting onto it.
Clearly, π defines a module morphism, so π(U) is also an O-module. Since U
spans Kn over Q, the piece of U in K, i.e. π(U), must span K over Q. Since π(U)
is a full O-module in K, we may choose some α ∈ Z such that OK ⊆ (1/α)π(U).
It follows that there is some nonzerodivisor a ∈ π(U), since otherwise every
tuple of algebraic integers would have a zero coordinate, which is clearly not
the case.

It follows that aO ⊆ π(U), so O ⊆ (1/a)π(U), and therefore O is free of rank
less than or equal to dimQK := m (by the fundamental theorem of finitely gen-
erated abelian groups). Next, let {αi}mi=1 be a Z-basis of π(U). Then, αiαj =∑m

k=1 x
ij
k αk for some rational numbers {xijk }. By scaling out the denominators,

we see that for some integers {yijk }, we have (xαi)αj =
∑m

k=1 y
ij
k αk ∈ π(U).

Therefore, for each i, xαi ∈ O, and since these elements form a linearly inde-
pendent set, the rank of O is at least m. It follows that O is an order in K as
desired.

■

2.2 The Theorem of Latimer and MacDuffee (Section 1.2)

In this section, Husert proves what will be our main tool for studying matrix
similarity over the integers.
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A note on terminology is in order. We say that X ∈ Matn(k) is semisimple
if its minimal polynomial is square-free. One can show that this is equiva-
lent to the condition that every X-invariant subspace of kn has an X-invariant
complement. This explains the connection between semisimple matrices and
semisimple rings. Indeed, X is semisimple if and only if its associated module
MX (see Section 1.4) is a semisimple k[x]-module. One can describe a semisim-
ple matrix in terms of its eigenvalues. We say that an eigenvalue λ of X is
semisimple if its geometric and algebraic multiplicity are equal. As explained in
the notes on lemma 1.5, in characteristic 0, a matrix is semisimple if and only
if all of its eigenvalues are semisimple.

We can now state the generalized Latimer-MacDuffee theorem.

Theorem (Latimer-MacDuffee-Husert)

• Let v = (v1, . . . , vs) be a tuple of algebraic integers with distinct minimal
polynomials µ1, . . . , µs.

• Let K =
⊕s

i=1 Q(vi), and let O = Z[v].

• Let n = (n1, . . . , ns), ni ∈ Z>0.

• Let µ = µ1 · · ·µs and χ = µn1
1 · · ·µns

s .

Then, there is a bijection between the set of similarity classes of integer matrices
with minimal polynomial µ and characteristic polynomial χ and isomorphism
classes of full O-modules in Kn.

The proof of this powerful theorem mostly relies on clever linear algebra. For
the full proof, see Husert’s thesis. We collect a couple of notes on the proof
below.

Notes on Lemma 1.5: A squarefree polynomial in characteristic 0 is sep-
arable. Indeed, irreducible polynomials are coprime to their derivatives, and
distinct irreducibles cannot share any roots by considering minimal polynomi-
als. Therefore, any semisimple integer matrix A is diagonalizable in some field
extension (such as a splitting field of the characteristic polynomial). It follows
that the algebraic and geometric multiplicities of any eigenvalues of A are the
same when we compute geometric multiplicities over our splitting field. How-
ever, since eigenspaces arise as the kernel of a linear map, their dimension may
be computed by row reduction (which is independent of what field we view our
matrix in), and therefore the dimension of Eig(A, vι) over Kι is nι, the algebraic
multiplicity of vι. With these ideas in mind, the proof that U is a module over
Z[α] is straightforward.
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Elementary linear algebra tells us that a basis of a subspaceW of a vector space
V may be extended to a basis of V . Unfortunately, general modules are not so
well-behaved. Indeed, there exist free submodules of free modules whose bases
may not be extended to their parent module. We can characterize free submod-
ules of free modules whose bases may be extended. A free submodule N of a
free R-module M may be extended to a basis of M if and only if M/N is free.
This is useful for proving that U is a full O-module in Kn.

It suffices to show that the columns of Ξ are Z-linearly independent. Suppose
this is not the case. The matrix Ξ corresponding to A ∈ Matm(Z) may be
viewed as a Z-linear map Zm → U ⊆ Kn. Although we do not yet know how to
control the rank of U , we can be sure that U is Z-free because it a finitely gen-
erated Z-submodule of the Q-algebra Kn. Therefore, imΞ is a free Z-module.
As Z/ ker Ξ ∼= imΞ, we see that ker Ξ is a nonzero free submodule (say, of rank
j) with a basis that can be extended to a basis of Zm. We can then define
a matrix B ∈ GL(m,Z) with columns w1, . . . wm as the basis obtained by ex-
tending a basis of ker Ξ. Without loss of generality, we can assume that the
basis vectors for the kernel are given as the final j columns. Then, ΞB = [Υ 0]
where Υ = [v1, . . . , vk] has linearly independent columns. Of course, vi = Ξwi,
and the collection of such vectors is linearly independent because otherwise
Ξ(a1w1 + · · · + am−jwm−j) = 0 for nontrivial scalars {ai}, contradicting that
the first m− j vectors wi live outside of ker Ξ. Taking C = BT , we obtain the
matrix C ∈ Matm(Z) from the thesis.

The rest of the proof is clear as written.

Notes on Lemma 1.9: Let us expand on the claim that the vectors xι1, . . . , x
ι
nι

are linearly independent. If this were not the case, we could choose some non-
trivial linear combination equal to zero and form a row vector using the coeffi-
cients. Then, extend to a basis of the eigenspace. In this way, we can construct
Γ ∈ GL(n,K) such that ΓΞ has a zero row, so ΓU (and therefore U itself) cannot
be full. Therefore, dimKι

Eig(A, vι) ≥ nι.

Since the geometric multiplicity of an eigenvalue is always less than or equal to
its algebraic multiplicity, χ = µn1

1 · · ·µns
s divides the characteristic polynomial

of A. Since these two polynomials have the same degree, they must be equal. It
follows that the algebraic multiplicity of vι is nι, so each vι is a semisimple eigen-
value (algebraic and geometric multiplicities coincide). Recall that a matrix is
diagonalizable in a field extension (potentially diagonalizable) if and only if each
of its eigenvalues are semisimple. So far, we have established that for each irre-
ducible factor µι of the characteristic polynomial of A there exists a semisimple
eigenvalue, namely vι. By the following lemma (communicated to the author by
Vanni Noferini), this implies that all eigenvalues of A are semisimple. Thus, A
is potentially diagonalizable, and therefore semisimple with minimal polynomial
µ1 · · ·ms.
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Lemma 4 Let K/F be a finite extension of fields of characteristic 0 and let
A ∈ Matn(F ). Suppose that the minimal polynomial of A decomposes into
irreducibles over F as mA(x) = m1(x) · · ·ms(x). Then, for any i, there exists
a semisimple root of mi(x) if and only if all roots of mi(x) are semisimple.

Proof. It is easy to show that the rank of a matrix is the order of its largest
nonzero minor. Since a field automorphism has trivial kernel, applying a field
automorphism entrywise to a matrix preserves whether a minor is zero or not.

Let vi be a semisimple root ofmi(x). Choose some basis for Eig(A, vi) and letW
denote the matrix whose columns consist of such basis vectors. By assumption,
the geometric multiplicity of vi equals its algebraic multiplicity ni. Next, let
Gi = Gal(mi(x)). Consider (A − viI)W = 0 and apply some g ∈ Gi entrywise
to obtain (A−g(vi)I)g(W ) = 0. Recall that g permutes the roots of mi(x). We
know that g(W ) has full rank because g is an automorphism, so the geometric
multiplicity of g(vi) is at least ni. Since our fields are characteristic 0, the
algebraic multiplicity of g(vi) is the same of that of vi (irreducible polynomials
are separable). It follows that the geometric multiplicity of g(vi) is ni. Because
mi(x) is irreducible, Gi acts transitively on its roots, and every root must be
semisimple.

■

Let us discuss where we now stand with the integral matrix similarity problem.
The Latimer-MacDuffee-Husert (LMH) theorem tells us that two integral ma-
trices with minimal polynomial µ and characteristic polynomial χ are similar if
and only if their corresponding modules in Kn are isomorphic. Therefore, we
will have made great progress if we understand how to compute isomorphism
classes of full modules. Unfortunately, it appears that computing such isomor-
phism classes is a relatively hard problem. Indeed, in the easiest case (EC)
where χ is irreducible and Z[v] = OK, this amount to determining whether two
fractional ideals belong to the same idea class. By inverting one such fractional
ideal, we see that this is equivalent to determining whether a given fractional
ideal is principal. There are known algorithms to perform this task, and we
cover them in depth in Section 3, but we will see that even this simple case
requires a lot of work to understand.

Fortunately, as we will soon see, the principal ideal testing algorithm gets us
pretty far. Without too much extra work, it allows us to test whether two full
modules over the maximal order in K =

⊕s
i=1Ki are isomorphic. Therefore,

for any square-free minimal polynomial µ and arbitrary characteristic polyno-
mial χ, if we are lucky enough to have Z[v] = OK, then we can test for similarity.

We might also be interested in computing a full collection of representatives of
the similarity classes of semisimple matrices with given characteristic and min-
imal polynomial. To ensure we have found all classes, we need to understand
how many there are. By LMH, this amounts to understanding the number of
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isomorphism classes of full O-modules. In EC, this is precisely the class num-
ber of Z[v] = OK. In small cases, we can use Minkowski’s bound to compute
class numbers with relative ease, so in EC we often have a method to determine
the number of similarity classes. To compute a set of representatives in EC
amounts to computing a class group and mapping inequivalent ideals to their
matrices under the LMH map. There are known algorithms for computing the
class group of a number field. The recent paper ”Computing the Ideal Class
Monoid of an Order” by Stefano Marseglia claims to have an algorithm that
allows for the computation of the ideal class monoid for a non-maximal order.
We will consider computing class groups in greater depth later.

Already, we can use ad-hoc methods to produce a set of a representatives for
similarity classes. Let us do an easy example. Consider K = Q(

√
−5) with

OK = Z[
√
−5]. One can compute that p2 = (2), where p = (2, 1 +

√
−5). It

follows that N(p) = 2. But then there is no (x, y) ∈ Z2 such that x2 + 5y2 = 2,
so p is not principal. Therefore, the class group has order at least 2. It is easy
to compute that Minkowski’s boundMK is less than 3. Let I be a non-principal
ideal of norm 2. Then, by Lagrange’s theorem, 2 ∈ I, hence I | (2) = p2. But
then it must be that I = p because I is not principal. It follows that Z[

√
−5]

and p are a full set of representatives and K has class number 2.

We write Z[
√
−5] = Z +

√
−5Z and (2, 1 +

√
−5) = 2Z + (1 +

√
−5)Z. Recall

that the LMH correspondence sends full O = Z[v]-modules to the matrix rep-
resentation of the multiplication by v map. Therefore, we obtain non-similar
matrices (

0 −5
1 0

)
Z[v]

(
−1 −3
2 1

)
p

and we know these are a full collection of representatives.

A sharp reader may notice that the matrix corresponding the class of princi-
pal ideals is the companion matrix of χ(x) = x2 + 5. This is no coincidence.
The Z-linear multiplication by v on Z[v] is represented by the companion of the
characteristic polynomial, and (1) = Z[v] is principal.

Note that even if we know a full collection of representatives for similarity
classes, it is not obvious how to relate a given matrix to the known classes.
Over a field, there are algorithms that transform a matrix to its RCF. However,
for integer matrices, the problems of similarity testing and producing a collec-
tion of representatives seem more distant because there is no known (similarity
preserving) canonical form over the integers.

2.2.1 Purely Monogenic Fields

A number field K is called monogenic when OK = Z[α] for some α ∈ OK. In
the EC, we are concerned with a specific type of monogenic field. Namely, we
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are considering the ideal class group of a number field K = Q(α) such that
OK = Z[α] for some α ∈ OK. There does not seem to be an accepted name in
the literature for this specific case, so we will coin some terms. A number field
K = Q(α) is purely monogenic if OK = Z[α]. We will refer to the generator
α of a purely monogenic number field as a purely monogenic integer. An inte-
ger matrix with irreducible characteristic polynomial and a purely monogenic
eigenvalue will be called a purely monogenic matrix.

Some examples of purely monogenic number fields are the cyclotomic fields and
quadratic fields Q(

√
d) when d ̸≡ 1mod 4. The cyclotomic field example is more

involved, but we will compute the ring of integers of quadratic number fields.

Proposition 14 Let d be a squarefree integer and let K = Q(
√
d). Then,

OK = Z[ 1+
√
d

2 ] if d ≡ 1mod 4, and OK = Z[d] otherwise.

Proof. Let 1+
√
d

2 = ω. Observe that Z[d] ⊆ OK in general, and Z[ω] ⊆ OK
when d ≡ 1mod 4 because ω2 − ω + 1−d

4 . Therefore, it remains to show the re-

verse inclusion. Let α = a+ b
√
d be an algebraic integer. The reverse inclusion

is obvious if b = 0, so we assume b ̸= 0. Then, we have minimal polynomial
mα(x) = x2 − 2ax+ (a2 − b2d), so 2a and a2 − b2d are rational integers.

Next, 4(a2 − b2d) = 4a2 − 4b2d ∈ Z, hence 4b2d ∈ Z. We will show that 2b ∈ Z.
Write b = m

n , (m,n) = 1. So, 4m2d
n2 ∈ Z, and because d is square-free we get

n2 | 4m2. It follows n | 2m and writing 2m = nx for some y ∈ Z, and we see
2b = y.

Writing a = x
2 for some x ∈ Z and b = y

2 , we see x2 − y2d ≡ 0mod 4. The only
squares mod 4 are 0 and 1, corresponding to even and odd integers, respectively.
So if d ≡ 1 then both x and y are even or both are odd. Otherwise, d ≡ 2mod 4
or d ≡ 3mod 4, and both a and b are even.

When d ≡ 1mod 4, we can write α = x−y
2 + yω ∈ Z[ω]. Otherwise, both a and

b are even, so α ∈ Z[d].

■

By LMH, the easiest case of testing similarity of integer matrices is precisely
equivalent to testing whether a given ideal of OK is principal for a purely mono-
genic number field K. The number of similarity classes of a purely monogenic
matrix with purely monogenic eigenvalue α is the class number of Q(α).

We have mostly just introduced new language to talk about old ideas in this
section, but it helps to make the connection between integer matrices and num-
ber theory more clear. One route that we have not yet explored but may be
interesting is seeing what we can say about purely monogenic number fields by
using matrix theory.
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The equality of class numbers and number of similarity classes allows us to
use tables of class numbers to come up with examples of matrices with a given
number of similarity classes. For example, according to this table, Q(

√
−74) has

class number 10. Because 74 ≡ 2mod 4, we see
√
−74 is purely monogenic and

there are 10 similarity classes of integer matrices with characteristic polynomial
χ(x) = x2+74. Unlike the case of matrices over a field, the number of similarity
classes with given characteristic polynomial does not seem to depend at all on
the degree of the characteristic polynomial.

We may also want to identify when a field is purely monogenic. Although it
does not seem to be well understood in general, there exists a simple sufficient
condition.

Proposition 15 Suppose that α ∈ OK and the discriminant of Z[α] is square-
free. Then, Q(α) is purely monogenic.

Proof. Consider the integral basis 1, α, . . . , αn−1 for Z[α]. Let β1 . . . , βn be an
integral basis for OK. Recall from Proposition 12 that disc(1, α, . . . , αn−1) =
[OK : Z[α]]2 dK. Because our discriminant is assumed to be square-free, the
index must be equal to 1.

■

It is easy to see that the discriminant of any Z[α] =
∏

i<j(αi − αj)
2 using the

formula for the determinant of a Vandermonde matrix.

2.3 Equivalence Over Maximal Orders (Section 1.3)

We now want to extend the work of the previous section on the purely monogenic
case (the easiest case), to a broader class of matrices. To do so, we want to un-
derstand modules over the maximal order OK (ring of integers) of K =

⊕s
i=1Ki.

Suppose that K =
⊕s

i=1Ki and U is a full module in Kn over the maximal order
OK.

Because OK =
⊕s

i=1Ki, we have U =
⊕s

i=1 Ui where {Ui} are full OKi -modules
in Kni .

Therefore, any two full OK-modules in Kn can be decomposed as the direct sum
of modules, and it is not hard to see that they are isomorphic if and only if each
of their corresponding summands are isomorphic. We then see that it suffices
to study full OK-modules in Kn where K is a number field and n is a positive
integer and then “stitch things together block by block.”

We have reduced the problem from studying full
⊕s

i=1OKi
-modules in Kn, to

full OK-modules (K a number field) in Kn (n an integer). We want to now
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reduce further to studying full OK-modules in K.

By the results of Preliminary Section 2.2, we know that OK is a Dedekind
domain. From Theorems 1 and 2, we know any full OK-module U is isomor-
phic to a direct sum of ideals

⊕n
i=1Ai of OK, which is in turn isomorphic to

A1 · · ·An ⊕On−1
K .

Define A = A1 · · ·An and B = B1 · · ·Bn for ideals {Ai} and {Bi} in OK.
Suppose that U = A ⊕ On−1

K and B = B ⊕ On−1
K . Obviously, if A ∼= B, then

U ∼= B. The other direction is also true and is Proposition 1.13 in Husert’s work.

Proposition 1.13* Suppose U = A1⊕ · · ·⊕An and B = B1⊕ · · ·⊕Bn are two
full modules in Kn. If Γ ∈ GL(n,K) satisfies ΓU = B, then det(Γ)A1 · · ·An =
B1 · · ·Bn.

Proof. We write Γ = (γij) and observe thatBi =
∑n

j=1 γijAj . Thus, B1 · · ·Bn =∏n
i=1(

∑
j γijAj). When we expand this product, we see that we can obtain a

term involving A1 · · ·An in many ways. In fact, each such term corresponds to
a choice of some σ ∈ Sn (we get to choose from which factor we want a given
Aj with no repeats).

For each σ ∈ Sn, we obtain a summand of the form
∏

j γj,σ(j)Aσ(j). It fol-
lows that the coefficient appearing on A1 · · ·An in the expanded product is∑

σ∈Sn
(
∏

j γj,σ(j)). This is starting to look like the permutation definition of
the determinant.

Indeed, det Γ =
∑

σ∈An
(
∏

j γj,σ(j)) +
∑

σ∈Sn\An
(sgn(σ)

∏
j γj,σ(j)).

By definition, sgn(σ) = −1 for σ ∈ Sn \An, so we obtain the following equality:

det Γ +
∑

σ∈Sn\An
(
∏

j γj,σ(j)) =
∑

σ∈An
(
∏

j γj,σ(j)).

Therefore, B1 · · ·Bn = det(Γ)(A1 · · ·An)+
∑

σ∈Sn\An
(
∏

j γj,σ(j))(A1 · · ·An). It

follows that det(Γ)(A1 · · ·An) ⊆ B1 · · ·Bn. By considering Γ−1, we prove the
other inclusion identically.

■

Therefore, testing the isomorphism class of full modules over the maximal or-
der amounts to determining whether a series of fractional ideals are princi-
pal. Husert says that there are well known algorithms to do this, but he does
not address these algorithms. In the following section, we will discuss in de-
tail Johannes Buchmann and H.C. Williams’ principal ideal testing algorithm.
Minkowski’s theory on the geometry of numbers and the Lenstra–Lenstra–Lovász
(LLL) algorithm will be indispensable tools, and we will address them as well.
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3 Principal Ideal Testing in Number Fields

In this section, we give a detailed account of how to test whether an ideal in
the ring of integers of a number field is principal.

3.1 Minkowski Theory and the Finiteness of the Class
Number

We mostly follow Milne’s ANT Chapter 4, but skip some details that are not
relevant to us in order to give a succinct account of Minkowski’s bound.

Let us give a definition of a lattice in a vector space which is slightly more
general than that in Section 1. Let K be a field with subring R ⊆ K. Then, an
R-lattice Λ in a K-space V is a finitely generated R-submodule of V such that
KΛ = V . When we first introduced lattices, we required R to be a Noethe-
rian integral domain with field of fractions K. Now, we drop those additional
conditions because we will want to consider Z-lattices in Rn. In the case that
we want to differentiate between the two sorts of lattices, let us call the former
“module lattices” and the latter “Euclidean lattices.”

By the fundamental theorem of finitely generated abelian groups, any Z-lattice
in Rn is Z-free. Note that, unlike in module lattices, the spanning condition
does not fix the Z-rank of a lattice because Z-independence is different from
R-independence. For example, we can have a rank 3 lattice in R2: take the
Z-linear span of (1, 0), (0, 1), (

√
2, 0). This is a bit weird, and we will not con-

cern ourselves with such cases, but the given definition does not preclude their
existence. We will call a Euclidean lattice Λ ⊆ Rn full if its Z-rank is n.

Given a full lattice Λ in Rn with basis β = {x1, . . . , xn} and an anchor point
x, we define the fundamental parallelepiped with respect to (x, β) as the set
Fx(β) = {x +

∑n
i=1 λixi | λi ∈ [0, 1)}. Note that for a fixed basis β, when we

vary x ∈ Rn over all points, we obtain a partition of Rn. Most of the time,
we will have an implicit base point and basis, in which case we will denote a
fundamental parallelepiped as just F .

Recall that there exists a canonical Haar measure µ on Rn such that µ([0, 1]n) =
1. Of course, µ is just the Lebesgue measure on Rn, and the above is a fancy
way of stating its basic properties.

Now, we want to show that the measure of the image of the unit cube under
T ∈ End(Rn) is |det(T )|. If T is invertible, we can write it as the product of
elementary matrices. The affect of the elementary matrices on the measure of
the cube precisely corresponds to its affect on the determinant of the identity
matrix, so the statement holds for invertible T . If T is not invertible, then
it can be written as the product of elementary matrices times a matrix that
has a row of zeros. Therefore, the image of the cube under T has all zeros in
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some coordinate, so we can produce a covering using cubes with a degenerate
side, and the result follows. Because µ is translation invariant, it follows that
for all x ∈ Rn, µ(Fx(β)) = |det(β)|, where the RHS should be interpreted as
magnitude of the determinant of the matrix with columns from β.

Theorem 8 (Blichfield) Let F be a fundamental parallelepiped for a full lattice
Λ ⊆ Rn. Let S be a measurable subset of Rn. If µ(S) > µ(F ), then there exist
distinct α, β ∈ S such that β − α ∈ Λ.

Proof. Because the Λ-translates of F partition Rn, we can write S =
⋃

x∈Λ S ∩ Fx.
By countable additivity, it follows that

∑
x∈Λ µ(S ∩ Fx) = µ(S) > µ(F ). Next,

we translate back to the origin by considering Ox = (S ∩ Fx) − x ⊆ F , and
we see that

∑
x∈Λ µ(Ox) > µ(F ). It follows that some distinct Ox1 and Ox2

overlap, so we may choose w ∈ Ox1 ∩Ox2 . But, then we have w+ x,w+ y ∈ S,
and (w + x)− (w + y) = x− y ∈ Λ.

■

Theorem 9 (Minkowski) Let T ⊆ Rn satisfy that α, β ∈ T =⇒ 1
2 (α− β) ∈ T .

Let F be a fundamental parallelepiped of Λ. Then, T contains a nonzero point
of Λ if µ(T ) > 2nµ(F ).

Proof. Let S = 1
2T . Then, T contains the difference of any two points of

S, so it will suffice to show that µ(S) > µ(F ) by Blichfield’s Theorem. But,
µ(S) = 2−nµ(T ), so this clearly holds.

■

The condition on T we specified may seem strange, but there is a large class of
subsets which satisfy it. The class we care about are the convex, 0-symmetric
subsets. Recall that X ⊆ Rn is 0-symmetric if x ∈ X =⇒ −x ∈ X. It is easy
to verify such sets meet the condition placed on T .

Therefore, if T ⊆ Rn convex, 0-symmetric, and µ(T ) > 2nµ(F ), then T contains
a nonzero point of lattice Λ. This is the standard formulation of Minkowski’s
convex body theorem. Although generally the strict inequality is required, if we
also assume that T is compact, non-strict inequality suffices.

We first need a general lemma about topological groups. We follow the proof
given by Tuo.

Lemma 5 Let G be a Hausdorff topological group. Then, any discrete subgroup
H ≤ G is closed.

Proof. By definition of the subspace topology and H being discrete, we can
find an open set U ⊆ G such that U ∩H = {e}. Our first goal will be to show
that we can find an open set V ⊆ U such that V V −1 ⊆ U and e ∈ V .
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Let σ : U × U → G be given by (y1, y2) 7→ y1y
−1
2 . This map is the restriction

of the continuous multiplication map composed with the continuous inversion
map, so it is continuous. Define N = σ−1(U) and observe that N ⊆ U × U is
an open subset containing (e, e). By definition of the product topology, (carte-
sian products of open sets form a base for the topology), we know that there
exist open sets V1, V2 ⊆ U such that e ∈ V1, V2. Define V = V1 ∩ V2 so that
V × V ⊂ V1 × V2 and V V −1 = σ(V × V ) ⊆ σ(V1 × V2) ⊂ U .

Now, let x ∈ Hc. We will construct an open neighborhood of x contained in Hc,
which will show that H is closed. Define Lx : G → G as left multiplication by
x. As a restriction of the continuous multiplication map G×G→ G, we see Lx

is continuous for any x ∈ G. It is easy to see that Lx is then a homeomorphism
with inverse Lx−1 . In particular, Lx is an open map, so W := Lx(V ) is an open
neighborhood of x.

Suppose that h1, h2 ∈W∩H. Then, h1 = xv1 and h2 = xv2 for some v1, v2 ∈ V .
It follows that h1h

−1
2 = v1v

−1
2 ∈ V V −1 ⊆ U . Hence, h1h

−1
2 ∈ U ∩H = {e}, so

h1 = h2. Therefore, W intersects H at at most one point. If W ∩H =, then we
have our desired neighborhood of x. If W ∩H = {h}, then we use the Hasdorff
condition on W to find an open neighborhood of x disjoint from h.

■

Note that this lemma also implies that the notion of a shortest nonzero vector
in a lattice in Rn is well defined. Observe that Br(0) ∩ Λ is finite, where Br(0)
is the compact n-dimensional ball of radius r centered at 0. Therefore, we can
choose a sufficiently large r such that Br(0)∩Λ contains nonzero lattice points,
and then choose a minimum from the finite set of nonzero lengths.

Proposition 16 Let T ⊆ Rn be compact, convex, and 0-symmetric. Suppose
that µ(T ) ≥ 2nµ(F ). Then, T contains a nonzero lattice point.

Proof. For any ϵ > 0, µ((1 + ϵ)T ) = (1 + ϵ)nµ(T ) > 2nµ(F ), so (1 + ϵ)T con-
tains a nonzero lattice point. It is easy to see that Λ is discrete in the subspace
topology, so Λ ∩ (1 + ϵ)T is a discrete, compact set (Λ is closed by the lemma
and closed subsets of compact sets are compact). It follows trivially from the
definition of compactness that Λ ∩ (1 + ϵ)T is finite.

Next, we show that T =
⋂

ϵ>0(1 + ϵ)T . One inclusion is trivial, so we only
need to show that

⋂
ϵ>0(1 + ϵ)T ⊆ T . Suppose that x ∈

⋂
ϵ>0(1 + ϵ)T but

x /∈ T . Then, because T is a compact subset of a Hausdorff space, T is closed.
Therefore, we can choose a ball around x entirely outside of T . By shrinking ϵ,
this contradicts x ∈

⋂
ϵ>0(1 + ϵ)T .

Let a > 0. Suppose that none of the finitely many points of Λ ∩ (1 + a)T other
than the origin are in T . Then, we can choose ϵ > 0 small enough such that
Λ∩(1+ϵ)T = {0}, which contradicts (1+ϵ)T containing a nonzero lattice point.
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So, how does the geometry of lattices relate to number theory and ideal class
groups? Well, for any degree n number field K, we can associate a lattice in Rn

to each of its nonzero ideals.

Let σi : K ↪→ C denote the embeddings of K in C. We say that an embedding
is real if σi(K) ⊆ R and complex if this is not the case. Because the complex
conjugate of any embedding is also an embedding, complex embeddings come
in conjugate pairs. Therefore, n = r+2s, where r is the number of real embed-
dings and s is the number of complex embeddings of K.

Putting all of these embeddings together, we obtain a map σ : K ↪→ Rn given by
σ(x) = (σ1(x), . . . , σr(x),R(σr+1(x), I(σr+1(x)), . . . ,R(σr+s(x)), I(σr+s(x))),
where R and I denote taking real and imaginary parts, respectively. The injec-
tivity of σ will be justified shortly.

Crucially, if a is any nonzero ideal of OK, then σ(a) is actually a lattice in Rn.
Therefore, if we want to study an ideal of OK, we can consider its associated
lattice and use the tools of convex geometry to understand the ideal.

Proposition 17 Let a be a nonzero ideal of OK. Then, σ(a) is a full lattice in

Rn. If F is a fundamental parallelpiped of σ(a), then µ(F ) = 2−sN(a)|dK |
1
2 .

Let α1, . . . , αn be an integral basis of a. To show that σ(a) is a full lattice, it
suffices to show that the “lattice matrix” L with rows σ(αi) has nonzero deter-
minant. Recall that the embedding matrix E of a has nonzero determinant by
Proposition 13.

We will show how to transform ET into the lattice matrix. We will differentiate
between the columns of ET and the L by using the subscrpits E and L, respec-
tively.

First, note that the first r columns of these two matrices are equal. We start
by examining columns (r + 1)E and (r + 2)E . By adding column (r + 2)E to
(r+1)E , the resulting matrix A1 has column r+1 as two times column (r+1)L.
Multiply this column by 1

2 , so that the resulting matrix A2 has column r + 1
as (r + 1)L. Now, subtract 1

2 times column r + 1 of A2 from column r + 2 of
A2 to obtain a matrix A3 with column r + 1 as (r + 1)L and column r + 2 as
−i(r+ 2)L. Divide column r+ 2 of A3 by −i to obtain a matrix A4 whose first
r + 2 columns agree with those of the lattice matrix.

Observe that all of these transformations change the determinant of ET by a
factor of −1

2i . Therefore, after performing these transformations on all s pairs
of complex conjugate columns to obtain matrix L, we see that the determinant
has been scaled by −1

(2i)s . Therefore, |det(L)| =
1
2s |det(E)|.
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Finally, µ(F ) = |det(L)| = 2−s|det(E)| = 2−s|disc(a)| 12 = 2−sN(a)|dK |
1
2 .

■

The above proof is a bit pedantic. Everything should be clear if one writes
out the matrices on a blackboard. Note that this argument also shows σ has
nontrivial kernel, implying its injectivity.

Theorem 10 Let a be a nonzero ideal of OK. Then, a contains a nonzero
element α such that |NK/Q(α)| ≤ N(a)MK, where MK = n!

nn (
4
π )

s|dK |
1
2 .

Proof. First, let V = Rr × Cs. This is an n-dimensional real vector space. We
can canonically identify V with Rn through the map φ, which expresses the
complex coordinates as their real and imaginary parts.

Then, we have a vector space norm such that ∥x∥ =
∑r

i=1 |xi|+
∑r+s

i=r+1 |zi| for
any x = (x1, . . . , xr, zr+1, . . . , zr+s).

Define X(t) = {x ∈ V | ∥x∥ ≤ t} as the norm ball of radius t. By a messy cal-
culus calculation akin to calculating the volume of the Euclidean n-ball (done
in full as lemmas 4.22 and 4.23 in Milne), µ(φ(X(t))) = 2r−sπs tn

n! .

Consider the lattice σ(a) and let F be one of its fundamental parallelpipeds.
A general fact from convex geometry is that there is a bijection between com-
pact, convex, 0-symmetric subsets of Rn with 0 as an interior point, and vector
space norms on Rn, so we immediately know φ(X(t)) satisfies the conditions
from Minkowski’s theorem. This is also easy to verify directly. Therefore, for t
large enough such that µ(φ(X(t))) ≥ 2nµ(F ), the ball φ(X(t)) must contain a
nonzero point σ(α) ∈ σ(a).

Then,

|NK/Q(α)| = |σ1(α)| · · · |σr(α)||σr+1(α)|2 · · · |σr+s(α)|2

≤ (

r∑
i=1

|σi(α)|+
r+s∑

i=r+1

2|σi(α)|)n/nn

≤ tn/nn

by Proposition 10 and the AM-GM inequality.

We want to choose t such that µ(φ(X(t))) = 2nµ(F ) to make our bound as
tight as possible. A quick calculation tells us that the desired value for t is such
that t = (N(a)|dK |

1
2n!( 4π )

s)
1
n .

Plugging this into our estimate above, we obtain the desired bound.

■
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Finally, we arrive at Minkowski’s bound.

Theorem 11 Let c be a nonzero ideal of OK. Then, there exists an ideal J in
the ideal class of c such that N(J) ≤MK.

Proof. Let I be an integral ideal in the class of c−1. We can choose some
γ ∈ I such that NK/Q(γ) ≤ MKN(I). Because OK is Dedekind, using unique
factorization we can find an integral ideal J such that IJ = (γ). It follows that
I is in the ideal class of c. Further, using the multiplicativity of the numerical
norm, we see that N(I)N(J) = |NK/Q(γ)| ≤ MKN(I). Dividing by N(I), we
obtain the so called Minkowski bound: N(J) ≤MK.

■

Because there are only finitely many integral ideals of a given numerical norm,
it follows that the ideal class group of OK is finite.

We should note that the finiteness of the class group is not unique to number
fields. We will prove a vastly more general finiteness theorem in the section on
the Jordan-Zassenhaus Theorem. However, Minkowski’s bound specifically is an
inherently number theoretic result. It does not appear that there is a similarly
nice computable constant that plays the role of MK in the general case.

3.2 Reduced Ideals (Buchmann)

We present our understanding of Buchmann’s paper “On the computation of
units and class numbers by a generalization of Lagrange’s algorithm.”

Let us introduce notation that will be used throughout the section. Let K be
a number field of degree n with r real embeddings σ1, . . . , σr and s pairs of
conjugate complex embeddings σr+1, σr+1, . . . , σr+s, σr+s. Let m = r + s. For
each 1 ≤ i ≤ m, define | · |i to be the normalized Archimedean valuation. This
means that for x ∈ K, |x|i = |σi(x)| when 1 ≤ i ≤ r, and |x|i = |σi(x)|2 for
r+1 ≤ i ≤ m (|·| being the complex modulus). Let A be an integral ideal of OK.

We now give the main definition for this section. Let J be a fractional ideal of
OK. Then, 0 ̸= x ∈ J is a minimum of J if there does not exist a nonzero α ∈ J
such that |α|i < |x|i for all 1 ≤ i ≤ m. Because |NK/Q(a)| =

∏m
i=1 |a|i, we see

that any element of minimal norm must be a minimum. In particular, the units
of OK in J are minima.

Our first goal will be to establish that A has only finitely many non-associated
minima.

Proposition 18 Let x be a minimum of A. Then, |NK/Q(x)| ≤ ( 2π )
sN(A)|dK |

1
2 .

Proof. Let CA = ( 2π )
sN(A)|dK |

1
2 . We apply Minkowski’s convex body the-

orem to a specific body to obtain the result. Recall that we have a canonical
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identification φ : Rr × Cs → Rn. Let x ∈ A and suppose that |NK/Q(x)| >
( 2π )

sN(A)|dK |
1
2 . We will show that x is not a minimum.

Consider the following set: X = {y ∈ Rr × Cs | |yi| < |σi(x)|} where yi de-
notes the components of y. We can then map X in Rn by the canonical map:
φ(X) = {y ∈ Rn | |yi| < |σi(x)|, y2r+i + y2r+i+1 < |σr+i(x)|2, 1 ≤ i ≤ r}.

This resulting set can be thought of as a cylinder with r rectangular parts and s
circular parts. By using Fubini’s theorem and the change of variables formula,
we have the following computation:

µ(φ(X)) =
∫
φ(X)

1dµ = (
∏r

i=1 2|σi(x)|)(
∏s

j=1 π|σr+j(x)|2) = 2rπs|NK/Q(x)|.

Now, let σ be as in Proposition 17. Consider the lattice σ(A) associated with
A and let F be a fundamental parallelpiped of σ(A). Then, using the results
from Minkowski theory:

2nµ(F ) = 2n−sN(A)|dK |
1
2 ≤ 2n−s|NK/Q(x)||dK |

1
2 < 2rπs( 2π )

sN|dK |
1
2 < µ(φ(X)).

Because X is compact, convex, and 0-symmetric, so is φ(X). By Minkowski’s
convex body theorem, φ(X) contains a nonzero lattice point, and this means
that x is not a minimum of A.

■

This bound on the absolute norm of minima implies that A has finitely many
non-associated minima. Indeed, |NK/Q(x)| = N((x)), and we know that there
are finitely many ideals of a given norm. Therefore, because two elements gen-
erate the same ideal if and only if they are associate, for each integer k up to
the bound, there are finitely many elements of norm k. Thus, A has finitely
many non-associated minima. We will refer to a set of representatives for the
non-associate classes of minima of A as a cycle of minima of A.

It is not hard to very that if x is a minimum of A and α ∈ K×, then αx is a
mimimum of αA.

Proposition 19 Let A and A′ be ideals of OK. Let C be a cycle of minima
in A and let µ′ be a minimum of A′. Then, A ∼= A′ if and only if there exists
µ ∈ C such that 1

µA = 1
µ′A

′.

Proof. Clearly, 1
µA = 1

µ′A
′ implies A ∼= A′, so it only remains to show the

other direction. If A ∼= A′, then there exists α ∈ K× such that A = αA′. It
follows that αµ′ is a minimum of A. Because C is a cycle of minima in A, we
can find a unit β such that βµ = αµ′ for some µ ∈ C.

To conclude, observe that 1
µA = 1

βµA = 1
αµ′A = 1

µ′A
′.
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We say that an integral ideal A is primitive if it is not divisible by any ratio-
nal integer, i.e., 1

nA is not any ideal of OK for any n ∈ Z. Define L(A) to be
the smallest positive rational integer in A. We say that an integral ideal A is
reduced if it is primitive and L(A) is a minimum of A.

There is a close connection between cycles of minima and reduced ideals as
shown in the following theorem.

Theorem 12 Let A be an ideal of OK and let C = {µ1, . . . , µp} be a cycle of
minima in A. Then, there are exactly p reduced ideals B1, . . . , Bp in the ideal
class of A. These ideals are given by the formula 1

L(Bj)
Bj =

1
µj
A, for 1 ≤ j ≤ p.

Proof. For 1 ≤ j ≤ p, let mj = min{m ∈ Z>0 | m
µj
A ⊆ OK}. Define the ideal

Bj :=
mj

µj
A. We will show that Bj is reduced.

First, we show that Bj is primitive. Because Bj ⊆ OK and OK is integrally
closed, there does not exist any k ∈ Z not dividing mj such that 1

kBj is an
integral ideal. Indeed, this would imply Bj contains a proper rational. Further,
if k ∈ Z divides mj and divides Bj , then this contradicts the definition of mj

because
mj

k scales 1
µj
A into OK.

Next, we note that 1 is a minimum of 1
µj
A because µj is a minimum of A. It fol-

lows that mj is a minimum of Bj . Now, we just need to show that mj = L(Bj).
Suppose that mj > k ∈ Z>0 and k ∈ Bj . Then, |µj

k
mj
|i < |µj |i for 1 ≤ i ≤ m,

and µj
k
mj
∈ A, which contradicts µj being a minimum of A.

Therefore, each Bj is a reduced ideal of A and obeys the formula from the state-
ment of the theorem. To see that these are the only reduced ideals, observe that
the previous proposition implies 1

L(B)B = 1
µj
A for some j because C is a cycle.

Finally, Bj ̸= Bi for j ̸= i, because µj is not associated to µi (otherwise, we
could cancel the ideal by invertibility for a contradiction).

■

Because OK has finite class number, the above theorem implies that there
finitely many reduced ideals of OK.

We say that a minimum µ′ of A is a neighbor of a minimum µ of A provided
there is no 0 ̸= α ∈ A such that |α|i < max{|µ|i, |µ′|i} for 1 ≤ i ≤ m, and
|µ′| ≤ |µ|.

It is not hard to very that if x is a neighbor of x′ and α ∈ K×, then αx is a
neighbor of αx′. So, multiplication by units respects the neighbor relation.
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Lemma 6 The number of neighbors of a minimum µ of A is finite.

Proof. Let µ′ be another minimum of A. By Proposition 10, we can write
|NK/Q(µ)| =

∏m
i=1 |µ|i.

Copying Proposition 18, we see that
∏m

i=1 max{|µ|i, |µ′|i} ≤ CA.

It follows that 0 ≤ |µ′|i ≤ CA/
∏

j=1,j ̸=i |µ|j , for 1 ≤ i ≤ m.

Letting σ : K ↪→ Rn be as in Proposition 17, we see that σ(µ′) lies in a cylinder
with r rectangular parts and s circular parts, the size of which only depends
on µ. The intersection of a lattice with such a cylinder is a discrete, compact
set, and therefore finite. Because σ is injective, this implies µ has finitely many
neighbors.

■

A set N ⊆ A of minima is called a neighbor-cycle if the elements of N are
pairwise non-associated, and if for each x ∈ N , each neighbor of x is associated
to some element of N . Note that Buchmann calls a neighbor-cycle a cycle
of minima. The following fundamental theorem shows these two notions are
equivalent.

Theorem 13 Let A ⊆ OK be an ideal. Then N is a neighbor-cycle of A if and
only if it is a cycle of minima of A.

■

A crucial step in the principal ideal testing algorithm will be to compute the
set of all reduced ideals in the class of principal ideals of OK. We now give an
algorithm to compute the set of reduced ideals in a given ideal class.

Cycle of Reduced Ideals Algorithm

Let A ⊆ OK be an ideal. We will compute the set of all reduced ideals of OK
in the ideal class of A. We assume that we already know the Z-basis for some
reduced ideal B in the class of A. We will address how to compute such a B later.

We initialize the algorithm with the following parameters:
k ← 1, p← 1, B1 ← B/L(B), µ1 ← 1, i← 1.

We then perform the following steps until k > p: (∗)

1. Compute a complete system of neighbors Tk = {η(k)1 , . . . , η
(k)
xk } of 1 in Bk.

2. Repeat until i > xk. Set B ← (1/η
(k)
i )Bk. If B = Bj for some 1 ≤ j ≤ p,

then we have a “repeat,” so increment i← i+ 1. Otherwise, in order, set

p← p+ 1, Bp ← B, and µp ← η
(k)
i µk, and then increment i← i+ 1.
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3. Set k ← k + 1.

Finally, once k exceeds p, set Bk ← dkBk with dk = min{d ∈ Z>0 | dBk ⊆ OK},
for 1 ≤ k ≤ p, and terminate the algorithm.

Now, let us justify the correctness of the algorithm and explain how it works.

First, we can verify by induction that 1
µk
B1 = Bk in (∗). The base case is trivial.

Now, suppose (1/µj)B1 = B1 for positive integers up to some j. Observe that
Bj+1 is obtained during the kth iteration of (∗) for some integer k ≤ j as

Bj = (1/η
(k)
i )Bk.

By induction, we can writeBk = (1/µk)B1, and thereforeBj+1 = (1/η
(k)
i )(1/µk)B1.

Because µj+1 is obtained as µj+1 = η
(k)
i µk, we see that Bj+1 = (1/µj)B1.

Similarly, we can show that µk is a minimum of B1 for 1 ≤ k ≤ p. The base
case is trivial because 1 is a unit.

Now, suppose µj is a minimum for positive integers up to some j. For some

k ≤ j, we can write µj = η
(k)
i µk. By induction, µk is a minimum of B1. Further,

η
(k)
i is a neighbor of 1 in Bk, and by definition neighbors are minima. Therefore,

η
(k)
i is a minimum of Bk = (1/µk)B1, hence η

(k)
i µk = µj+1 is a minimum of B1.

BecauseB = Bj if and only if the minima ηµk and µj are associated, {µ1, . . . , µp}
is a cycle of minima of B1 by Theorem 13. By Theorem 12, it follows that the
output {B1, . . . , Bp} at the termination of the algorithm is a cycle of reduced
ideals in the class of A.

Let us break down the algorithm in more depth. As we have shown above, to
compute a cycle of reduced ideals in the class of A, it suffices to find a cycle
of minima of B1. Furthermore, by Theorem 13 we know that cycles of minima
are the same as neighbor-cycles. Therefore, to obtain a cycle of minima of A,
we need a set such that up to units the neighbors of its elements stay within
the set, and we have no extraneous elements. Essentially, we want the smallest
set that contains the minima of A up to units. This is awfully similar to the
ubiquitous notion of generation in algebra. When dealing with “the (algebraic
structure) generated by (subset of algebraic structure),” we frequently have two
equivalent descriptions. For example, the span of a set of vectors E in a vector
space is the smallest subspace containing E, but also can be characterized as all
finite linear combination of elements of E (the set obtained by “closing” under
the vector space operations).

Through the lens of generation, we can view Theorem 13 as proving the equiv-
alence of “smallest subset containing the minima up to units” and “smallest
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subset closed under the neighbor relation up to units.” Because 1 is always
a minimum of B1, we see that this latter notion is the same as the “smallest
subset containing 1 closed under the neighbor relation up to units.” Let us call
a subset closed under the neighbor relation up to units a neighborhood. Our
goal of computing a cycle of minima of B1 can thus be re-framed as computing
the smallest neighborhood of 1 in B1.

With this conceptual framework, we can see that all that the algorithm is do-
ing is producing a set closed under the neighbor relation by force. Indeed, we
start with µ1 = 1, and then obtain our first group of minima as all of the non-
associated neighbors of 1 in B1. Then, we obtain our second group of minima
by multiplying by the neighbors of 1 in B2, which amounts to closing under the
neighbors of µ2 because multiplication by units is compatible with the neighbor
relation. Each time we close under the neighbor relation, we obtain more ele-
ments whose neighbors we must include.

A priori, it is not clear why this process must terminate. But, remember that we
have proved that there are finitely many total minima and each has only finitely
many neighbors. Therefore, there must exist an index m after which none of
our iterations produce new minima. After m, the index p is held constant while
k is incremented until it overtakes p and the algorithm terminates.

We also need to make sure that the algorithm cannot terminate before we have
a full cycle of minima. To see this, observe that the kth iteration of (∗) produces
wk new minima for some wk ∈ Z. Therefore, after k iterations, our value for k
is just k+1, and our value for p is kwk+1. By definition, after k iterations, our
set of minima contains all of the neighbors of µ1, . . . , µk. To have k > p, the
next k(wk − 1) + 1 iterations must be inert (in the sense that no new minima
are produced; this is the case precisely when our set already contains all neigh-
bors up to units). When the algorithm terminates, our set of minima therefore
contains up to units all of the neighbors of k + k(wk − 1) + 1 = p minima. By
Theorem 13, these minima form a cycle.

3.3 The LLL Algorithm

Let L be an integral lattice in Rn. In the section on Minkowski theory, we
showed how such a lattice can be associated to any ideal a of the ring of inte-
gers OK of a number field. These will be the lattices with which we are primarily
concerned, but the lattice reduction algorithm we discuss is broadly useful.

Because a lattice is a free Z-module, any rank m lattice L can be written
as AZm for some A ∈ Matn×m(R). We can then show that two matrices
A,B ∈ Matn×m(R) with associated lattices LA and LB define the same lat-
tice if and only if there exists some C ∈ GLn(Z) such that A = BC. If such a
matrix exists, it is obvious that A and B define the same lattice because A = BC
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implies LB ⊆ LA, and inverting C we obtain the reverse inclusion. If A and B
define the same lattice, then we can find a (necessarily unimodular) change of
basis matrix which scales one into the other. Therefore, the determinant of any
matrix defining a full lattice is the same, and we define det(L) := |det(AL)|,
where AL is any matrix defining L.

The LLL algorithm takes as an input a basis for an integer lattice and outputs
an LLL-reduced basis for the same lattice. The vectors in an LLL-reduced basis
are “short” in a precise sense. We will refer the reader to Henri Cohen’s “A
Course in Computational Algebraic Number Theory,” which addresses the al-
gorithm in great depth. Going forward, we assume familiarity with the version
of the LLL algorithm presented in Cohen’s book.

A useful application of the LLL algorithm is finding a shortest vector in a full
integral lattice in Rn. We present the algorithm given by H. W. Lenstra, Jr. in
“Integer Programming with a Fixed Number of Variables.”

Shortest Vector Algorithm (Lenstra)

Let L be a full integer lattice in Rn with basis b1, . . . , bn. By the LLL algo-
rithm, we may assume that this basis is LLL-reduced. Let x ∈ L and write
x =

∑n
i=1mibi for some mi ∈ Z.

We can define y ∈ Rn as the vector with coordinates mi and B as the matrix
with columns bi. We can then write By = x. Let Bx

i be the matrix B with
column i replaced with x.

By Cramer’s rule, we have |mi| = |det(Bx
i )|/|det(B)|. By Hadamard’s inequal-

ity and the LLL condition:

|mi| ≤ |x|
| det(B)|

∏n
j=1,j ̸=i |bj | =

|x|
| det(B)||bi|

∏n
j=1 |bj | ≤ c2

|x|
|bi|

where c2 = 2n(n−1)/4.

If x is a shortest vector, then |x|
|bi| ≤ 1, so |mi| ≤ c2. Thus, if x is a shortest

vector, it lies in the finite set {y ∈ L | y =
∑n

i=1mibi,mi ∈ Z, |mi| ≤ c2}.

Since this allows for 2c2 possibilities for each coordinate, and there are n coor-
dinates, the total search space is a set of cardinality 2nc2.

3.4 Computing Minima (Buchmann and Willams)

At long last, we reach the final step of the principal ideal testing algorithm. In
this section, we describe our understanding of Buchmann and Williams’ algo-

42

https://www.jstor.org/stable/3689168
https://www.sciencedirect.com/science/article/pii/S0747717187800494
https://www.sciencedirect.com/science/article/pii/S0747717187800494


rithm for computing a minimum of an ideal β ⊆ OK.

Before proceeding forward, let us describe how to test whether β is principal,
provided we know how to compute minima. We will first choose some principal
ideal of OK and compute one of its minima. Using Theorem 12, this allows us
to find a reduced principal ideal. Applying the reduced cycle algorithm to this
ideal yields a full cycle of the finitely many reduced principal ideals. We then
compute a minimum of β and use it to find a reduced ideal R in the class of β.
Finally, we check to see if R belongs to the cycle of principal ideals. If it does,
then β is principal, and if it does not, then β is not principal.

3.4.1 Rational Approximation Lattices

As before, let K be a number field of degree n with r real embeddings σ1, . . . , σr
and s pairs of conjugate complex embeddings σr+1, σr+1, . . . , σr+s, σr+s. Let
m = r + s.

Now, let ω1, . . . , ωn be an integral basis for OK and let ΩE be the corresponding
embedding matrix. Adding a superscript of (i) to an element of K will always

denote its image under σi. For example, Ω = (ω
(i)
k )n×n. Let σ : K ↪→ Rn be

the Minkowski mapping from Proposition 17. Let ΩL be the matrix whose ith
row is σ(ωi). By the LLL algorithm, we can replace σ(ω1), . . . , σ(ωn) with some
LLL reduced basis. Pulling back under the injective map σ, we obtain an in-
tegral basis for OK whose lattice comes with an LLL-reduced basis. Therefore,
without loss of generality, we can assume σ(ω1), . . . , σ(ωn) is LLL-reduced.

By Proposition 13, we know that |det(ΩE)| = |dK |
1
2 . Furthermore, by Propo-

sition 17, we know that |det(ΩL)| = 2−s|det(ΩE)|.

Lemma 7 For all 1 ≤ i, j ≤ n, |ω(i)
j | < 2n

2/4|det(ΩE)|.

Proof. We will first prove that |σ(ωj)| ≥ 1 for all j. Because ωj ∈ OK, we
know that NK/Q(ωj) ∈ Z, so its absolute norm is greater than or equal to 1.

It follows that
∏n

i=1 |ω
(i)
j | ≥ 1. Therefore, using the AM-GM inequality, we

obtain:

1 ≤ (
∏n

i=1 |ω
(i)
j |)

1
n ≤ 1

n

∑n
i=1 |ω

(i)
j | ≤ maxi |ω(i)

j | ≤ |σ(ωj)|.

Because ω1, . . . , ωn is LLL-reduced, we know that
∏n

i=1 |σ(ωj)| ≤ 2n(n−1)/4|det(ΩE)|.

It follows that |ω(i)
j | ≤ |σ(ωj)| ≤ 2n(n−1)/4|det(ΩE)| < 2n

2/4|det(ΩE)| as
claimed.

■
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This bound will be used later in the justification of the algorithm to come.

Recall that to any ideal β of OK, we can associate a lattice σ(β). We want to

approximate this lattice by a lattice β̂ with rational coordinates, i.e., β̂ ⊆ Qn.

Because β is generated over Z by the ω
(i)
j , it will suffice to define a rational

approximation to such elements.

For any entry z = a + bi of ΩE , define its level q rational approximation as
ẑ(q) = [2qa]/2q + i[2qb]/2q, where the brackets denote the floor function.

For any α ∈ OK, we can write α =
∑n

j=1 xjωj uniquely.

Therefore, α(i) =
∑n

i=j xjω
(i)
j and we define α̂(i) =

∑n
i=j xjω̂

(i)
j .

We now define a rational Minkowski mapping σ̂ : OK → Qn ⊆ Rn by sending
α ∈ OK to (α̂(1), . . . , α̂(r),R(α̂(r+1)), I(α̂(r+1)), . . . ,R(α̂(r+s)), I(α̂(r+s)), where

R and I denote real and imaginary parts, respectively. Let β̂ = σ̂(β).

We now define Ω̂L to be the matrix whose ith column is σ̂(ωi).

A simple calculation then yields |ΩL−Ω̂L|max < 2−q, where |X|max denotes the

maximum modulus of the entries of matrix X. Also, |ω(i)
k − ω̂

(i)
k |max < 2−q+1/2.

Note the difference in the bounds. The matrices ΩL and Ω̂L have real entries
while ω

(i)
k and ω̂

(i)
k may have nontrivial imaginary parts. Although some of our

embeddings are complex, the rational Minkowski map σ̂ converts complex co-
ordiates to real and imaginary parts. The magnitude of the difference between
a real number and its floor is always less than or equal to 1, but when dealing
with the complex modulus and nontrivial imaginary parts, we end up adding
together two such differences, resulting in an extra

√
2 factor.

We also define Ω̂E to be the matrix obtained by taking rational approximations
component-wise. Note that the entries of this matrix may have nontrivial imag-
inary parts.

We now want to show that like the Minkowski map σ, the rational Minkowski
map sends an ideal β ⊆ OK to a lattice in Rn (for sufficiently large q). Es-
sentially, because we know the determinant of the lattice σ(β) is nonzero, by
choosing a sufficiently precise rational approximation, we can ensure that Ω̂L

has nonzero determinant as well. Because the columns of Ω̂L span σ̂(OK), its de-
terminant determines whether σ̂(OK) is a lattice. Further, if σ̂(OK) is a lattice,

the map σ̂ is injective, so σ̂(β) = β̂ is a lattice as well.

Theorem 14 There is a constant D = D(n) such that if q > log2(2
sD|dK |(n−2)/2),

then Ω̂L(q) is invertible.
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Proof. By the reverse triangle inequality we obtain:

|det(Ω̂L)| ≥ |det(ΩL)| − | det(Ω̂L)− det(ΩL)|.

Recall that |det(ΩL)| = 2−s|det(ΩE)| > 0 by Proposition 17. Thus, if we can
bound the difference |det(Ω̂L)− det(ΩL)| above by a function of q whose limit
q →∞ is 0, then for large enough q we can force |det(Ω̂L)| > 0.

By the multi-linearity of the determinant, we obtain that

|det(Ω̂L)− det(ΩL)| ≤
∑n

i=1 |det(Ωj)|,

where Ωj has columns [σ(ω1), . . . , σ(ωj−1), σ̂(ωj)− σ(ωj), σ̂(ωj+1), . . . , σ̂(ωn)].

By Hadamard’s inequality, |det(Ωj)| ≤
∏n

i=1 |vi|, where the vi are the columns

of Ωj . We see that we have n−1
2 columns coming from ΩL and Ω̂L, respectively,

and a single column coming from Ω̂L − ΩL.

By Lemma 7 and our previous bound on |Ω̂L − ΩL|max, we have the following
inequalities:

n∏
i=1

|vi| ≤ (
√
n|vj |max)

n∏
i=1,i̸=j

√
n2n

2/4|dK |
1
2

≤ (2n
2(n−1)/4n

n
2 )2−q|dK |(n−1)/2.

LetD1 = 2n
2(n−1)/4n

n
2 . We then see that |det(Ω̂L)−det(ΩL)| ≤ nD12

−q|dK |(n−1)/2.

We want to guarantee that nD12
−q|dK |(n−1)/2 < |det(ΩL)| = 2−s|dK |

1
2 to

force Ω̂L to be invertible.

This amounts to q > log2(2
sE|dK |

n−2
2 ), where D = nD1 = 2n

2(n−1)/4n
n+1
2 .

■

Now that we know β̂(q) is a lattice for sufficiently large q, we can use Lenstra’s

algorithm to compute a shortest vector µ̂ ∈ β̂(q).

3.4.2 Definitions and Bounds

Let µ̂ =
∑n

j=1 yj σ̂(βj) =
∑n

j=1 xj σ̂(ωj), be a shortest vector in β̂, where

β1, . . . , βn is an integral basis of β. Similarly, define µ =
∑n

j=1 yjβj =
∑n

j=1 xjωj .
We will call µ the element associated with µ̂.

Define T = (Tr(ωij))n×n = ΩT
EΩE and W = |Ω̂ET

−1|max + 2−q+1/2n|T−1|max.
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Observe that Ω−T
E = Ω̂ET

−1 + (ΩE − Ω̂E)T
−1. Although the norm | · |max

is not sub-multiplicative, one can check that |AB|max ≤ n|A|max|B|max for
A,B ∈ Matn(C).

It follows that |Ω−1
E |max ≤ |Ω̂ET

−1|max + 2−q+1/2n|T−1|max =W .

Next, define δ(q) = 2−q+1/2n2W and M̂ = |x|max/(nWN), where N = N(β) 1
n ,

and x = (x1, . . . , xn) is such that µ̂ =
∑n

j=1 xjω̂j .

Choose M̂i ∈ Q such that |µ̂(i)| ≤ M̂iN for 1 ≤ i ≤ n. Define Mi = M̂i + δM̂
and M = maxiMi.

3.4.3 Shortest Vectors and Minima

We will now show that µ is a minimum of β for sufficiently large q. We will
proceed by contradiction.

Suppose there exists 0 ̸= µ′ ∈ β such that |µ′(i)| < |µ(i)| for all 1 ≤ i ≤ n. (∗)

Proposition 20 If (∗) holds, then there is some 1 ≤ i ≤ n such that the
following bounds hold: |µ(i)|− |µ′(i)| < δc1N and |µ(i)|2−|µ′(i)|2 < δc2N , where
c1 = M̂ +M and c2 = 2Mic1.

Proof. First, observe that

|µ(i) − µ̂(i)| = |
∑n

j=1 xkω
(i)
k −

∑n
j=1 xkω̂

(i)
k | ≤ n|x|max2

−q+1/2 = δM̂N2,

by using |ω(i)
k − ω̂

(i)
k | < 2−q+1/2 and the triangle inequality.

Then, by the reverse triangle inequality and our bound on |µ̂(i)|, we obtain
|µ(i)| ≤ (M̂i + δM̂)N =MiN .

Next, let x′ ∈ Zn be such that σ(µ′) = ΩEx
′, which exists because the columns

of ΩE span σ(OK). It follows that |x′|max ≤ n|Ω−1
E |max |σ(µ′)|max ≤ nWMN .

Further, we see that |µ′(i) − µ̂′(i)| ≤ δMN by the same argument used in the
first string of inequalities in this proof.

Because µ̂ = σ̂(µ) is a shortest vector in β̂, there exists some 1 ≤ i ≤ n such
that |µ̂′(i)| − |µ̂(i)| ≥ 0.

For this i, we have the following inequalities:

|µ′(i)|−|µ(i)| ≤ |µ(i)|−|µ′(i)|+ |µ̂′(i)|−|µ̂(i)| ≤ |µ(i)− µ̂(i)|+ |µ′(i)− µ̂′(i)| ≤ c1δN .

This establishes our first claim. To see the second claim, set a = |µ(i)| and
b = |µ′(i)| and observe that a2 − b2 = (a− b)(a+ b) ≤ c1δN(2NMi) = c2δN

2.
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Proposition 21 If (∗) holds, then |µ(i)| − |µ′(i)| > N/c3 for 1 ≤ i ≤ r and
|µ(i)|2 − |µ′(i)|2 > N/c4 for r + 1 ≤ i ≤ n, where c3 = 2n−1Mn−1 and c4 =

2n
2−2Mn2−2.

Proof. Define γi = |µ(i)| − |µ′(i)| > 0 and let 1 ≤ i ≤ r. Recall that the
numerical norm of an ideal is always less than or equal to the modulus of the
norm of any of its elements. Further, one can show N(β) = N(β(i)), where the
norm of β(i) := σi(β) is taken as an ideal of K(i) := σi(K).

Therefore, Nn ≤ |NK(i)/Q(γi)| =
∏n

j=1 |τj(γi)|, where τj ∈ Hom(K(i),C). Be-
cause the embeddings σi are real-valued for 1 ≤ i ≤ r, our complex mod-
ulus reduces to the real absolute value. Therefore, because the τj are ring
maps, we can commute them with the absolute value to obtain

∏n
j=1 |τj(γi)| =∏n

j=1 |τj(µ(i))| − |τj(µ′(i))|. But because τj is an embedding, it permutes roots

of minimal polynomials, so |τj(µ(i))| and |τj(µ′(i))| are conjugates of µ(i) and
µ′(i), respectively.

Using our bound on the magnitude of the conjugates and the triangle inequality,
we see that τj(γi) ≤ 2NM . Noting that one of the τj is the identity, we obtain
bound Nn ≤ 2n−1Nn−1Mn−1γi. Thus, γi ≥ N/(2n−1Mn−1).

Now, let ξi = |µ(i)|2 − |µ′(i)|2 and r + 1 ≤ i ≤ n. Let L := K(i)K(i+1) be the
composite field of K(i) and its conjugate field. Let l = [L : K(i)] = [L : K(i+1).
Let B = β(i)β(i+1). It is easy to verify that ξi ∈ B.

Using the transitivity and multiplicativity of the relative ideal norm, and its
value on extended ideals, we see that N(BOL) = N2nl, where the norm is taken
viewing BOL as an ideal of OL.

As we saw in Proposition 10, each embedding of K(i) or K(i+1) are precisely
l extensions to an embedding L ↪→ C. Let η1, . . . , ηnl denote the collection of
embeddings L ↪→ C. Without loss of generality, assume η1 is the identity and
η2 is complex conjugation. Note that because r + 1 ≤ i ≤ n, K(i) ̸⊆ R, so these
maps are distinct (in the previous case they were the same).

Proceeding as before, we see that

N2nl ≤ ξ2i
∏nl

j=3 |ηj(ξi)| ≤
∏nl

j=3 |ηj(µ(i)µ(i+1))|+ |ηj(µ′(i)µ′(i+1))|

by the triangle inequality twice.

We then see that N2nl ≤ ξ2i
∏nl

j=3 2N
2M2 = ξ2i 2

nl−2N2(nl−2)M2(nl−2) by using
our bounds on conjugates.
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It follows thatN4/(22(nl−2)M2(nl−2)) ≤ ξ2i . And therefore, ξi ≥ N/(2nl−2Mnl−2).

Finally, because the index of a compositite of field extensions is less than
or equal to the product of their indexes, we see that l ≤ n, and we obtain
ξi ≥ N/(2n

2−2Mn2−2).

■

Corollary 2 If δ(q) < c5 := min{c−1
1 , c2(i)

−1, c−1
3 , c−1

4 | 1 ≤ i ≤ m}, then µ is
a minimum of β.

Proof. Suppose that µ is not a minimum, i.e., (∗) is true. By Proposition 20,
there exists 1 ≤ i ≤ r such that |µ(i)|−µ′(i)| < N/c3 and |µ(i)|2−µ′(i)|2 < N/c4.
By Proposition 21, either |µ(i)| − µ′(i)| ≥ N/c3 or |µ(i)|2 − µ′(i)|2 ≥ N/c4, so we
reach a contradiction.

■

Lemma 8 If Λ is a full lattice in Rn, then there exists a nonzero lattice point
x such that |x|max ≤ det(Λ)

1
n .

Proof. This lemma is a simple application of Minkowksi’s convex body theorem.
Indeed, let m = min{|x|max | 0 ̸= x ∈ Λ} and assume for a contradiction that

m > det(Λ)
1
n . Consider the cube C = {x ∈ Rn | |x|max < m}, and observe

that µ(C) = (2m)n > 2n det(Λ). Therefore, C contains a nonzero lattice point,
which is a contradiction.

■

Theorem 15 For sufficiently large q, δ(q) < c5(q).

Proof. Step 1:

Recall that W = |Ω̂ET
−1|max + 2−q+1/2n|T−1|max and δ(q) = 2−q+1/2Wn2.

Our first goal will be to show that δ(q) → 0 as q → ∞. Clearly, it suffices to
give an upper bound on W that does not depend on q. In what follows, ai,
i ≥ 1, will denote constants only depending on n.

First, |Ω̂E |max ≤ |ΩE |max ≤ a1|dK |
1
2 by Lemma 7.

By Cramer’s rule, Ω−1
E = 1

det(ΩE) adj(ΩE). Recall that the ith column of

adj(ΩE) is det(Aei
1 , . . . , A

ei
n ), where Aei

j denotes the matrix where the jth col-
umn of ΩE is replaced by ei.

By Lemma 7 again, we know that each of the columns of ΩE have magnitude

less than a1|det(ΩE)|, hence by Hadamard’s inequality, |Ω−1
E |max ≤ a2|dK |

n−2
2 .

Because T−1 = Ω−1
E Ω−T

E , we see that |T−1|max ≤ a3|dK |n−2. Thus, for suffi-
ciently large q,
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W ≤ n|Ω̂E |max|T−1|max + 2−q+1/2n|T−1|max ≤ a4|dK |n−1.

It follows that δ(q)→ 0 as q →∞. This completes the first step of the proof.

Step 2:

We next need to give upper bounds on M̂i(q) and M̂(q) to ensure that c5(q)
cannot also get arbitrarily small as q →∞.

By Hadamard’s inequality, |det(X)| ≤ nn|X|nmax, for any matrix complex ma-
trix X, so |det(Ω̂E)| ≤ a5|dK |

n
2 . It follows by the argument in Proposition

17 relating the determinant of embedding matrices and lattice matrices that
|det(Ω̂L)| ≤ a5|dK |

n
2 .

Further, |det(Ω̂L)| is precisely det(σ̂(OK)), and det(σ̂(β)) is det(σ̂(OK)) times
the determinant of the change of basis matrix corresponding to the respective
lattice bases. By Proposition 12, this scale factor is precisely N(β), as the change
of basis matrix from {β1, . . . , βn} to {ω1, . . . , ωn} is the same as the change of
basis matrix for the image of these bases under σ̂.

It follows that det(σ̂(β)) ≤ a6|dK |
n
2Nn.

By Lemma 8, |µ̂|max ≤ |µ̂| ≤
√
ndet(β̂)

1
n = a7|dK |

1
2N .

Therefore, we may choose M̂i(q) = a7|dK |
1
2 , which gives an upper bound on

M̂i(q) independent of q.

Next, we have µ̂ = Ω̂Lx. Our goal will be to bound the components of x. This
will be somewhat involved.

Note that the columns of Ω̂L are the {σ̂(ωj)}nj=1 and these form a basis for the

lattice β̂. Further, |σ̂(ωj)| ≤ |σ(ωj)|, so
∏n

j=1 |σ̂(ωj)| ≤
∏n

j=1 |σ(ωj)|.

Proceeding as in the proof of Lenstra’s shortest vector algorithm, we see that

|xi| ≤ |µ̂|
| det(Ω̂L)||σ̂(βi)|

∏n
j=1 |σ(ωj)| ≤ a1|µ̂|

|σ̂(βi)|
| det(ΩL)|
| det(Ω̂L)| .

By Theorem 14, |det(Ω̂L)| ≥ |det(ΩL)| − 2−qD|dK |
n−1
2 ≥ |det(ΩL)| − 1 for

sufficiently large q. Similarly, |σ̂(βi)| approaches |σ(βi)| as q →∞. So, for large
q, |σ̂(βi)| ≥ |σ(βi)| − 1.

Putting everything together, we see that |xi| ≤ a1a7N |dK |
1
2

| det(ΩL)|
(|σ(βi)|−1)(| det(ΩL)|−1) .

Therefore, we have some constant E not depending on q such that |x|max ≤ E.
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Observe that W ≥ |ΩE |−1
max ≥ 1

n |ΩE |−1
max.

By definition, M̂(q) = |x|max

nWN . Using our bounds on |ΩE |max and |x|max, we see

that M̂(q) ≤ a1E| dK |
1
2

N for sufficiently large q, and our bound is independent of q.

Therefore, as q → ∞, δ(q) → 0, while c5(q) ̸→ 0 because each of cj , 1 ≤ j ≤ 4
cannot grow arbitrarily large. It follows that δ(q) eventually falls below c5(q).

■

Computation of minima algorithm

We now have enough tools to compute minima of an ideal β ⊆ OK. The process
is relatively straightforward but rather computationally expensive. Remember
that we have assumed that ω1, . . . , ωn is an LLL-reduced basis of OK throughout
this section. Therefore, before proceeding forward, we must compute such a
reduced basis (1). Then, we use Theorem 14 to see how large q must be for
Ω̂L(q) to be invertible (2). After choosing q sufficiently large, we compute a

shortest vector 2qµ̂ in 2qβ̂(q) ⊆ Zn. We then scale 2qµ̂ by 2−q to obtain a

shortest vector µ̂ in β̂ with associated element µ (3). We then compute the cj ,
1 ≤ j ≤ 4, corresponding to µ and check if δ(q) < c5 (4). If so, then µ is a
minimum, and we terminate the algorithm. Otherwise, increment q and return
to step (3). By the above theorem, δ(q) is guaranteed to eventually drop below
c5(q), so the algorithm will terminate.

4 On the Number of Similarity Classes

For matrices over a field F , it is easy to determine the number of similarity
classes of matrices with characteristic polynomial χ = µn1

1 · · ·µ
nk

k . Indeed, this

number is simply the product
∏k

i=1 p(ni), where p denotes the number-theoretic
partition function by the structure of the rational canonical form.

We can also write down the number of similarity classes of matrices with minimal
polynomial µj1

1 · · ·µ
jk
k and characteristic polynomial µn1

1 · · ·µ
nk

k where ji ≤ ni
for 1 ≤ i ≤ k. Recall that the characteristic polynomial of a matrix is the
product of its invariant factors (the largest of which is its minimal polynomial),
and two matrices are similar if and only if they have the same invariant factors.
Once we have fixed the minimal polynomial, the exponents on the ith irreducible
factors of all smaller invariant factors must be ≤ ji. Further, these exponents
are weakly decreasing (as we move from the largest to the smallest invariant
factors) and their sum must be ni − ji. It follows that the number of similarity

classes with given minimal and characteristic polynomial is
∏k

i=1 pji(ni − ji),
where pji(h) is the number of partitions of h with terms less than or equal to ji.
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In particular, the characteristic polynomial is a similarity invariant for semisim-
ple matrices over a field.

Unfortunately, the story for integer matrices is much more complicated. By
the generalized Latimer-MacDuffee theorem, we know that similarity classes of
semisimple integer matrices with given characteristic polynomial are in bijection
with the isomorphism classes of certain modules over an order of a direct sum
of number fields. In the simplest case of integer matrices with irreducible char-
acteristic polynomial and purely monogenic eigenvalue α, this amounts to the
existence of a bijection between similarity classes and the ideal class group of
Q(α). If we drop the purely monogenic assumption, we get a bijection between
similarity classes and the ideal class monoid of Z[α]. Obviously, the charac-
teristic polynomial is not a similarity invariant for semisimple integer matrices
because there exist number fields of class number greater than 1.

The general theory of finitely generated torsion-free modules over hereditary
rings tells us that the similarity classes of semisimple integer matrices with
maximal associated order correspond to the similarity classes of matrices corre-
sponding to each direct summand of the maximal order.

Explicitly, the number of similarity classes of integer matrices with minimal
polynomial µ = µα1

· · ·µαk
, characteristic polynomial χ = µn1

α1
· · ·µnk

αk
, and

Z[α1, . . . , αk] =
⊕k

i=1OQ(αi) (associated order is maximal), is
∏k

i=1 hQ(αi).
Therefore, when dealing with the case of the maximal order, the number of
similarity classes falls entirely within the field of algebraic number theory. In
the case of general semisimple integer matrices, it seems that very little is known
about the number of similarity classes. However, we do know that this number
is guaranteed to be finite. Most of the rest of this section will be dedicated to
establishing this result.

The proofs given here mostly follow material presented in sections 20 and 79 in
Curtis and Reiner’s classic representation theory text.

Let L be a skewfield of dimension n over Q. Let Λ be a Z-order in L. Observe
that any map φ : M1 → M2 of L0-lattices in L extends uniquely to a map
ϕ ∈ EndL(L) ∼= Lop, hence is given by multiplication by some α ∈ L. Therefore,
the isomorphism classes of L0-lattices are the same as the equivalence classes of
lattices under the relation M1 ∼M2 ⇐⇒ M1 =M2α for some 0 ̸= α ∈ L.

Theorem 16 The number of isomorphism classes of L0-lattices in L is finite.

Before proceeding with the proof, notice that the finiteness of the class num-
ber immediately follows from the theorem by taking L as a number field and
L0 = OL. The cost of this greater generality is the loss of a bound such as
Minkowski’s bound for number fields. The structure of the proof is similar to
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the proof of Minkowski’s bound, except the bound on the norm of certain el-
ements of isomorphism classes is obtained without considering the Minkowski
lattice in Rn.

Proof. For each element α ∈ L, we can consider the “multiplication by α”
map. This map is Q-linear, and we define the norm N(α) to be its determinant.
For each ideal I ⊆ L0, we define its numerical norm N(I) = [L0 : I]. This
is guaranteed to be finite because L0 is Noetherian, hence I is an L0-lattice
and there exists some positive integer m such that mL0 ⊆ I. It follows that
[L0 : I] ≤ [L0 : mL0] = mn. We also have that N(xL0) = |N(x)| by an argu-
ment identical to the one used in the case of number fields.

Next, we want to show that there exists a positive constant c such that if X is
an L0-lattice, then there exists some 0 ̸= x ∈ X such that |N(x)| ≤ cN(X). In
the case of number fields, this constant c is precisely Minkowski’s bound MK.

Define the homogenous degree n polynomial f(ξ1, . . . , ξn) = det(ξ1M(α1) +
· · ·+ ξnM(αn)), where {αi} is a Z-basis for L0, and M(αi) denotes the matrix
representation for multiplication by αi with respect to this basis. There exists
c > 0 such that |f(ξ1, . . . , ξn)| ≤ can, where |ξi| ≤ a. Let X ⊆ L0 be an ideal
and consider the set of all Z-linear combinations of the integral basis α1, . . . , αn

with scalars bi between 0 and N(X)
1
n .

Because this set has more than N(X) elements, there must be at least two dis-
tinct elements with equal classes mod X. Their difference is some element x =∑n

i=1 aiαi ∈ X where |ai| ≤ N(X)
1
n . Hence, |N(x)| = |f(a1, . . . , an)| ≤ cN(X).

In the number field case, we could just conclude by Theorem 11, but we need a
slightly more subtle argument for the general case because we are not assuming
that L0 is Dedekind (so some ideals may not be invertible). We will show that
for each L0-lattice X there exists an isomorphic L0-lattice X

′ containing L0

such that [X ′ : L0] ≤ c. By scaling, we can assume that X ⊆ L0. Then, choose
x ∈ X such that |N(x)| ≤ cN(X) and define X ′ = Xx−1, so X ′ ∼= X.

Observe that L0x ⊆ X, so L0 ⊆ X ′ and we have the following string of equalities:

[X ′ : L0] = [Xx−1 : L0] = [X : L0x] = [L0 : L0x]/[L0 : X] ≤ |N(x)|/N(X) ≤ c.

To conclude, it will suffice to show that there are only finitely many L0-lattices
X ′ which contain L0 such that [X ′ : L0] ≤ c. This is very similar to the
statement that there are finitely many ideals of a given norm which we use in
the number field case. Let ℓ = [X ′ : L0] and observe that ℓL0 ⊆ ℓX ′ ⊆ L0,
so ℓX ′ is a subgroup of L0 containing ℓL0. Because these subgroups are in
bijection with subgroups of the finite group L/ℓL0, we see that there are finitely
many choices for X ′, which concludes the proof.
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The above theorem will serve as a stepping stone for the more general Jordan-
Zassenhaus theorem. Let A be a finite-dimensional semisimple algebra over
Q. Let G be a Z-order in A. For brevity, we will refer to finite rank Z-free
G-modules as simply G-modules. For example, when H is a finite group, and
A = Q[H] and G = Z[H], then G-modules are precisely integral representations
of G. Let L∗ be an A-module. We define a full G-module in L∗ to be a G-
module that is a subset of L∗ whose Q-linear span is all of L∗. Let Λ denote
the set of G-module isomorphism classes of full G-modules in L∗

Theorem 17 (Jordan-Zassenhaus) The number of G-module isomorphism classes
of full G-modules in L∗ is finite, i.e., Λ is a finite set.

Before proceeding with the proof, let us observe that this theorem implies that
the number of similarity classes of semisimple integer matrices with given char-
acteristic polynomial is finite. Indeed, following the notation is Section 2, if we
take A = K, L∗ = Kn, and G = Z[v], the Jordan-Zassenhaus theorem tells us
that the number of isomorphism classes of full Z[v]-modules in Kn is finite. By
the generalized Latimer-MacDuffee theorem, these isomorphism classes are in
bijection with the similarity classes of semisimple integer matrices with corre-
sponding characteristic polynomial.

Proof. We will first address the case where L∗ is an irreducible A-module. Be-
cause A is a semisimple algebra, up to isomorphism, we can view L∗ as a subset
of A. In particular, the irreducibility assumption tells us that L∗ is a minimal
left ideal of A. Further, by the Artin-Wedderburn theorem, we know that A is
isomorphic to a finite product of matrix rings over division rings. Because ideals
in a product of rings arise as the product of ideals in each component ring, the
projection of L∗ must be minimal in some matrix ring B = Matf (D), where D
is an n-dimensional division ring over Q (this naturally arises as EndB(L

∗) as in
the proof of Artin-Wedderburn). By Schur’s lemma, our surjective projection
map is actually an isomorphism of representations. Therefore, up to isomor-
phism, L∗ is a minimal left ideal of B.

We see immediately that B has dimension f2n over Q. We want to compute
the dimension of L∗ over Q. By the discussion following Proposition 4, we know
that Df is the unique irreducible representation of B up to isomorphism. Be-
cause Df has dimension fn over Q, and L∗ ∼= Df as A-representations, we see
that L∗ has dimension fn over Q as well.

We can also view D ⊆ B ⊆ A, which allows us to define D0 = D ∩ G. As a
submodule of G, we know that D0 is a free Z-module. We want to show that
D0 has full rank in D. Observe that QD0 = QD ∩QG = D ∩A = D, hence D0

has Z-rank n. [in progress]

■
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It turns out that semisimple matrices are the only class of matrices that admit
finitely many Z-similarity classes.

Theorem 18 The number of Z-similarity classes of integer matrices with min-
imal polynomial µ and characteristic polynomial χ is finite if and only if µ is
square-free.

If µ is semisimple, then by the Jordan-Zassenhaus theorem and the generalized
Latimer-MacDuffee theorem, the number of similarity classes if finite. So, it
remains to show that if µ is not square-free then there are infinitely many sim-
ilarity classes of integer matrices with minimal polynomial µ and characteristic
polynomial χ.

We will first show the result for nilpotent matrices, and then use the Jordan-
Chevalley decomposition to obtain the general case.

Lemma 9 Suppose A is a nonzero nilpotent integer matrix with minimal poly-
nomial µ and characteristic polynomial χ. Then, {nA}∞n=1 is an infinite collec-
tion of non-conjugate integer matrices with minimal polynomial µ and charac-
teristic polynomial χ.

Proof. We will show that nA is not similar to A over Z for any nonzero integer
n. This follows from the fact that the one of the SNF invariant factors of A
is gcd(A) and similar matrices have the same Smith Normal Form. Clearly,
gcd(nA) = n gcd(A) ̸= gcd(A), so nA and A have different invariant factors
and cannot be similar. However, scaling by n does not change the minimal or
characteristic polynomial of a nilpotent matrix, so we obtain infinitely many
distinct similarity classes.

Further, all such scaling fall into the same similarity class over Q. To see this,
observe that N has a Jordan form over Q because its characteristic polyno-
mial splits. For a block of the Jordan form of size r, we can conjugate by
diag(j, j2, . . . , jr) to scale by r. By stitching these diagonal matrices together,
we obtain a diagonal matrix Dj that conjugates N to rN over Q.

■

Recall that the Jordan-Chevalley decomposition for matrices over an algebraically
closed field F asserts that if A ∈ Matn(F ), then A = S+N , where S is semisim-
ple, N is nilpotent, and SN = NS. By Galois theory, we are guaranteed more:
the Jordan-Chevalley decomposition exists over any perfect field.

Theorem 19 Suppose A is an integer matrix with minimal polynomial µ. If
µ is not square-free, then the Q-similarity class of A splits into infinitely many
classes over Z. In particular, the number of Z-similarity classes of integer ma-
trices with characteristic polynomial χ and minimal polynomial µ is infinite.

54

https://math.stackexchange.com/questions/1716604/jordan-chevalley-decomposition-for-non-algebraically-closed-fields


Proof. Suppose A ∈ Matn(Z) is not semisimple and has minimal polynomial
µ. Matrices similar over the integers have the same Smith form and thus the
same GCD. It follows that if kA ∼Z B, then B is divisible by k and A ∼Z

1
kB.

Therefore, if the Q-similarity class of kA splits into j integer similarity classes,
then so does the Q-similarity class of A.

By the Jordan-Chevalley decomposition, we can uniquely write A = S + N ,
where S is a semisimple rational matrix and N is a nilpotent rational matrix,
and SN = NS. Because µ is not square-free, N is guaranteed to be nonzero.
By choosing sufficiently large k1 ∈ N, we can write k1A = k1S + k1N , where S
and N are integer matrices. Because k1N is nilpotent, its minimal polynomial
splits over Q, so we can choose a rational matrix Q that conjugates it to its
Jordan form: k1QAQ

−1 = k1QSQ
−1 + k1QNQ

−1.

It is possible that k1QSQ
−1 is not an integer matrix, which is problematic be-

cause we want to construct non-conjugate integer matrices with minimal polyno-
mial µ. Therefore, choose k2 ∈ N large enough so that k2k1QSQ

−1 ∈ Matn(Z)
and k2k1QAQ

−1 = k2k1QSQ
−1 + k2Jk1QNQ

−1.

Let B(i) denote the ith Jordan block of k2k1QNQ
−1 and suppose that B(i) has

size ni. Observe that if X ∈ Matr(Q), conjugation by diag(j, j2, . . . , jr) acts
by scaling the mth superdiagonal of X by jm and by scaling by j−m on the
mth subdiagonal. Therefore, conjugation by diag(j, j2, . . . , jni) acts on B(i) by
scaling the matrix by j.

Let Dj be the block diagonal matrix that scales k2k1QNQ
−1 by j through con-

jugation. We want to conjugate by Dj , but we need to ensure that k2k1QSQ
−1

remains an integer matrix after conjugation. Therefore, let k3 = jn and scale to
obtain k3k2k1QAQ

−1 = k3k2k1QSQ
−1 + k3k2k1QNQ

−1. Because conjugation
by Dj divides entries by at most jn, our choice of k3 ensures that we can safely
conjugate k3k2k1QSQ

−1.

Let k = k3k2k1 and Λj = DjQ. Conjugating by Dj , we get kΛjAΛ
−1
j =

kΛjSΛ
−1
j + kΛjNΛ−1

j , where both of the RHS summands are integer matri-

ces. For any X ∈ Matn(Q), define Xj = kΛjXΛ−1
j , so Aj = Sj + Nj and

SjNj = NjSj . Furthermore, Sj is semisimple and Nj is nilpotent. It is obvious
that Nj is nilpotent. To see Sj is semisimple, recall that semisimplicity and
potential diagonalizablility are equivalent over a perfect field like Q. Therefore,
conjugation and scaling do not change the semisimplicity of a matrix.

Now, DℓAjD
−1
ℓ is an integer matrix similar to Aj over Q, for 1 ≤ ℓ ≤ j.

However, DℓAjD
−1
ℓ is not similar to Aj over Z. To see this, observe that if

DℓAjD
−1
ℓ ∼Z Aj , then Aj = PDℓSjD

−1
ℓ P−1 + PDℓNjD

−1
ℓ P−1 for some uni-

modular matrix P . By the uniqueness of the Jordan-Chevalley decomposition,
we find that PDℓNjD

−1
ℓ P−1 = Nj . However, DℓNjD

−1
ℓ = ℓNj , which cannot
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be similar to Nj by Lemma 9. Therefore, the rational similarity class of Aj

splits into at least j integral similarity classes. By the discussion at the start
of the proof, this implies that the rational similarity class of A splits into at
least j integral similarity classes. Since j was arbitrary, this implies the rational
similarity class splits into infinitely many integer similarity classes.

■
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